Modulation of the Perylene Polyimide Crystalline Structure and Oxygen Vacancy Contents for Enhanced Photocatalytic Performance
Perylene polyimide networks are currently one of the most promising metal-free photocatalysts due to their excellent electrical and optical tunability. However, the disordered aggregation state structure in perylene polyimide resulting from the traditional imidization process is detrimental to the s...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2024-02, Vol.63 (5), p.2139-2152 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2152 |
---|---|
container_issue | 5 |
container_start_page | 2139 |
container_title | Industrial & engineering chemistry research |
container_volume | 63 |
creator | Fan, Xulong Liu, Fei Du, Zoufei Huang, Yun Dan, Yi Jiang, Long |
description | Perylene polyimide networks are currently one of the most promising metal-free photocatalysts due to their excellent electrical and optical tunability. However, the disordered aggregation state structure in perylene polyimide resulting from the traditional imidization process is detrimental to the separation and migration of the photogenerated charges, which in turn greatly hampers its photocatalytic activity. Herein, we report a facile approach to construct highly crystalline (∼98%) perylene polyimide photocatalysts via cascade reactions involving the assembly of perylenetetracarboxylic acid-melamine monomer salt crystals (PTA-MA), followed by solid-state imidization of the PTA-MA monomer salt. Meanwhile, oxygen vacancies (OVs) were introduced during the polycondensation of the PTA-MA monomer salts. By adjusting the polycondensation temperature, perylene polyimide photocatalysts (PTA-MA-Tn) with varying crystallinity and contents of OVs were obtained. Benefiting from its highly ordered structure and optimized OVs content, the as-prepared perylene polyimide photocatalyst (PTA-MA-200) obtains a suitable crystal structure and excellent photon-to-electron conversion efficiency and exhibits exceptional photoactivity in the photocatalytic valorization of benzylamines into imines. An approximately 10-fold increase in the rate of benzylamine photocatalytic conversion was observed in comparison to PTA. This study paves the way for the development of highly crystalline polyimide photocatalysts and has the potential to enhance the understanding of the structure–activity correlation in the context of applying perylene polyimide photocatalysts in practical scenarios. |
doi_str_mv | 10.1021/acs.iecr.3c03713 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_3c03713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h00326539</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-9ca03f37cfb9290d5e72fe434c919ba7430eb9bbbb0492e62ecb8940b7bfaa713</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw55gfQIfbJLQ5omp8SEObxMe1SlOHdeoSlGQSvfDbSTWu-GLLr_3aegi5zmGRQ5HfKh0WPWq_YBpYmbMTMstFAZkALk7JDKqqykRViXNyEcIOAITgfEZ-Xlx3GFTsnaXO0LhFukE_DmhT4Yax3_cd0tqPIaph6FP3NfqDjgePVNmOrr_HT7T0Q2ll9UhrZyPaGKhxni7tNjWxo5uti06r5DDGXk8HkryftEtyZtQQ8Oovz8n7w_KtfspW68fn-n6VqYKxmEmtgBlWatPKQkInsCwMcsa1zGWrSs4AW9mmAC4LvCtQt5Xk0JatUSrRmBM4-mrvQvBomi_f75UfmxyaiV-T-DUTv-aPX1q5Oa5Mys4dvE0P_j_-C8wUeBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modulation of the Perylene Polyimide Crystalline Structure and Oxygen Vacancy Contents for Enhanced Photocatalytic Performance</title><source>ACS Publications</source><creator>Fan, Xulong ; Liu, Fei ; Du, Zoufei ; Huang, Yun ; Dan, Yi ; Jiang, Long</creator><creatorcontrib>Fan, Xulong ; Liu, Fei ; Du, Zoufei ; Huang, Yun ; Dan, Yi ; Jiang, Long</creatorcontrib><description>Perylene polyimide networks are currently one of the most promising metal-free photocatalysts due to their excellent electrical and optical tunability. However, the disordered aggregation state structure in perylene polyimide resulting from the traditional imidization process is detrimental to the separation and migration of the photogenerated charges, which in turn greatly hampers its photocatalytic activity. Herein, we report a facile approach to construct highly crystalline (∼98%) perylene polyimide photocatalysts via cascade reactions involving the assembly of perylenetetracarboxylic acid-melamine monomer salt crystals (PTA-MA), followed by solid-state imidization of the PTA-MA monomer salt. Meanwhile, oxygen vacancies (OVs) were introduced during the polycondensation of the PTA-MA monomer salts. By adjusting the polycondensation temperature, perylene polyimide photocatalysts (PTA-MA-Tn) with varying crystallinity and contents of OVs were obtained. Benefiting from its highly ordered structure and optimized OVs content, the as-prepared perylene polyimide photocatalyst (PTA-MA-200) obtains a suitable crystal structure and excellent photon-to-electron conversion efficiency and exhibits exceptional photoactivity in the photocatalytic valorization of benzylamines into imines. An approximately 10-fold increase in the rate of benzylamine photocatalytic conversion was observed in comparison to PTA. This study paves the way for the development of highly crystalline polyimide photocatalysts and has the potential to enhance the understanding of the structure–activity correlation in the context of applying perylene polyimide photocatalysts in practical scenarios.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c03713</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial & engineering chemistry research, 2024-02, Vol.63 (5), p.2139-2152</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a233t-9ca03f37cfb9290d5e72fe434c919ba7430eb9bbbb0492e62ecb8940b7bfaa713</cites><orcidid>0000-0002-0985-7022 ; 0000-0002-4275-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c03713$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c03713$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Fan, Xulong</creatorcontrib><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Du, Zoufei</creatorcontrib><creatorcontrib>Huang, Yun</creatorcontrib><creatorcontrib>Dan, Yi</creatorcontrib><creatorcontrib>Jiang, Long</creatorcontrib><title>Modulation of the Perylene Polyimide Crystalline Structure and Oxygen Vacancy Contents for Enhanced Photocatalytic Performance</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Perylene polyimide networks are currently one of the most promising metal-free photocatalysts due to their excellent electrical and optical tunability. However, the disordered aggregation state structure in perylene polyimide resulting from the traditional imidization process is detrimental to the separation and migration of the photogenerated charges, which in turn greatly hampers its photocatalytic activity. Herein, we report a facile approach to construct highly crystalline (∼98%) perylene polyimide photocatalysts via cascade reactions involving the assembly of perylenetetracarboxylic acid-melamine monomer salt crystals (PTA-MA), followed by solid-state imidization of the PTA-MA monomer salt. Meanwhile, oxygen vacancies (OVs) were introduced during the polycondensation of the PTA-MA monomer salts. By adjusting the polycondensation temperature, perylene polyimide photocatalysts (PTA-MA-Tn) with varying crystallinity and contents of OVs were obtained. Benefiting from its highly ordered structure and optimized OVs content, the as-prepared perylene polyimide photocatalyst (PTA-MA-200) obtains a suitable crystal structure and excellent photon-to-electron conversion efficiency and exhibits exceptional photoactivity in the photocatalytic valorization of benzylamines into imines. An approximately 10-fold increase in the rate of benzylamine photocatalytic conversion was observed in comparison to PTA. This study paves the way for the development of highly crystalline polyimide photocatalysts and has the potential to enhance the understanding of the structure–activity correlation in the context of applying perylene polyimide photocatalysts in practical scenarios.</description><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw55gfQIfbJLQ5omp8SEObxMe1SlOHdeoSlGQSvfDbSTWu-GLLr_3aegi5zmGRQ5HfKh0WPWq_YBpYmbMTMstFAZkALk7JDKqqykRViXNyEcIOAITgfEZ-Xlx3GFTsnaXO0LhFukE_DmhT4Yax3_cd0tqPIaph6FP3NfqDjgePVNmOrr_HT7T0Q2ll9UhrZyPaGKhxni7tNjWxo5uti06r5DDGXk8HkryftEtyZtQQ8Oovz8n7w_KtfspW68fn-n6VqYKxmEmtgBlWatPKQkInsCwMcsa1zGWrSs4AW9mmAC4LvCtQt5Xk0JatUSrRmBM4-mrvQvBomi_f75UfmxyaiV-T-DUTv-aPX1q5Oa5Mys4dvE0P_j_-C8wUeBQ</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Fan, Xulong</creator><creator>Liu, Fei</creator><creator>Du, Zoufei</creator><creator>Huang, Yun</creator><creator>Dan, Yi</creator><creator>Jiang, Long</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0985-7022</orcidid><orcidid>https://orcid.org/0000-0002-4275-3815</orcidid></search><sort><creationdate>20240207</creationdate><title>Modulation of the Perylene Polyimide Crystalline Structure and Oxygen Vacancy Contents for Enhanced Photocatalytic Performance</title><author>Fan, Xulong ; Liu, Fei ; Du, Zoufei ; Huang, Yun ; Dan, Yi ; Jiang, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-9ca03f37cfb9290d5e72fe434c919ba7430eb9bbbb0492e62ecb8940b7bfaa713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xulong</creatorcontrib><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Du, Zoufei</creatorcontrib><creatorcontrib>Huang, Yun</creatorcontrib><creatorcontrib>Dan, Yi</creatorcontrib><creatorcontrib>Jiang, Long</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xulong</au><au>Liu, Fei</au><au>Du, Zoufei</au><au>Huang, Yun</au><au>Dan, Yi</au><au>Jiang, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the Perylene Polyimide Crystalline Structure and Oxygen Vacancy Contents for Enhanced Photocatalytic Performance</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>63</volume><issue>5</issue><spage>2139</spage><epage>2152</epage><pages>2139-2152</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Perylene polyimide networks are currently one of the most promising metal-free photocatalysts due to their excellent electrical and optical tunability. However, the disordered aggregation state structure in perylene polyimide resulting from the traditional imidization process is detrimental to the separation and migration of the photogenerated charges, which in turn greatly hampers its photocatalytic activity. Herein, we report a facile approach to construct highly crystalline (∼98%) perylene polyimide photocatalysts via cascade reactions involving the assembly of perylenetetracarboxylic acid-melamine monomer salt crystals (PTA-MA), followed by solid-state imidization of the PTA-MA monomer salt. Meanwhile, oxygen vacancies (OVs) were introduced during the polycondensation of the PTA-MA monomer salts. By adjusting the polycondensation temperature, perylene polyimide photocatalysts (PTA-MA-Tn) with varying crystallinity and contents of OVs were obtained. Benefiting from its highly ordered structure and optimized OVs content, the as-prepared perylene polyimide photocatalyst (PTA-MA-200) obtains a suitable crystal structure and excellent photon-to-electron conversion efficiency and exhibits exceptional photoactivity in the photocatalytic valorization of benzylamines into imines. An approximately 10-fold increase in the rate of benzylamine photocatalytic conversion was observed in comparison to PTA. This study paves the way for the development of highly crystalline polyimide photocatalysts and has the potential to enhance the understanding of the structure–activity correlation in the context of applying perylene polyimide photocatalysts in practical scenarios.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c03713</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0985-7022</orcidid><orcidid>https://orcid.org/0000-0002-4275-3815</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2024-02, Vol.63 (5), p.2139-2152 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_3c03713 |
source | ACS Publications |
subjects | Kinetics, Catalysis, and Reaction Engineering |
title | Modulation of the Perylene Polyimide Crystalline Structure and Oxygen Vacancy Contents for Enhanced Photocatalytic Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20Perylene%20Polyimide%20Crystalline%20Structure%20and%20Oxygen%20Vacancy%20Contents%20for%20Enhanced%20Photocatalytic%20Performance&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Fan,%20Xulong&rft.date=2024-02-07&rft.volume=63&rft.issue=5&rft.spage=2139&rft.epage=2152&rft.pages=2139-2152&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c03713&rft_dat=%3Cacs_cross%3Eh00326539%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |