PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases

This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2023-09, Vol.62 (37), p.15300-15310
Hauptverfasser: Esper, Timm, Bauer, Gernot, Rehner, Philipp, Gross, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15310
container_issue 37
container_start_page 15300
container_title Industrial & engineering chemistry research
container_volume 62
creator Esper, Timm
Bauer, Gernot
Rehner, Philipp
Gross, Joachim
description This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlier-removed data. All parameters are provided as JSON and CSV files.
doi_str_mv 10.1021/acs.iecr.3c02255
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_3c02255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h96278015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-f3a699cd33a28bcc2244eae09b1868616e7fb3f5aa02ab0733c9e64feb3bb5023</originalsourceid><addsrcrecordid>eNp1kFFrwjAUhcPYYJ3b-x7zA1Z3kzQ1fZROnSCsoD6Xm-xGFG0laWH796vo654Ol3PO5fAx9ipgLECKd3RxvCcXxsqBlFrfsURoCamGTN-zBIwxqTZGP7KnGA8AoHWWJWxZlVW6ns43vMKAJ-ooRN56XvWB-Lq3scPGUeTbuG92fIVhR3z2c6awP1HT4ZF_YIcWI8Vn9uDxGOnlpiO2nc825We6-losy-kqRWmgS73CvCjct1LDbZ2TMssICQorTG5ykdPEW-U1Iki0MFHKFZRnnqyyVoNUIwbXvy60MQby9XkYg-G3FlBfUNQDivqCor6hGCpv18rFObR9aIaB_8f_AMmWYlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases</title><source>American Chemical Society Journals</source><creator>Esper, Timm ; Bauer, Gernot ; Rehner, Philipp ; Gross, Joachim</creator><creatorcontrib>Esper, Timm ; Bauer, Gernot ; Rehner, Philipp ; Gross, Joachim</creatorcontrib><description>This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlier-removed data. All parameters are provided as JSON and CSV files.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c02255</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><ispartof>Industrial &amp; engineering chemistry research, 2023-09, Vol.62 (37), p.15300-15310</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-f3a699cd33a28bcc2244eae09b1868616e7fb3f5aa02ab0733c9e64feb3bb5023</citedby><cites>FETCH-LOGICAL-a280t-f3a699cd33a28bcc2244eae09b1868616e7fb3f5aa02ab0733c9e64feb3bb5023</cites><orcidid>0000-0002-5211-5358 ; 0000-0001-9750-5037 ; 0000-0002-2552-4391 ; 0000-0001-8632-357X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c02255$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c02255$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Esper, Timm</creatorcontrib><creatorcontrib>Bauer, Gernot</creatorcontrib><creatorcontrib>Rehner, Philipp</creatorcontrib><creatorcontrib>Gross, Joachim</creatorcontrib><title>PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlier-removed data. All parameters are provided as JSON and CSV files.</description><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kFFrwjAUhcPYYJ3b-x7zA1Z3kzQ1fZROnSCsoD6Xm-xGFG0laWH796vo654Ol3PO5fAx9ipgLECKd3RxvCcXxsqBlFrfsURoCamGTN-zBIwxqTZGP7KnGA8AoHWWJWxZlVW6ns43vMKAJ-ooRN56XvWB-Lq3scPGUeTbuG92fIVhR3z2c6awP1HT4ZF_YIcWI8Vn9uDxGOnlpiO2nc825We6-losy-kqRWmgS73CvCjct1LDbZ2TMssICQorTG5ykdPEW-U1Iki0MFHKFZRnnqyyVoNUIwbXvy60MQby9XkYg-G3FlBfUNQDivqCor6hGCpv18rFObR9aIaB_8f_AMmWYlU</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Esper, Timm</creator><creator>Bauer, Gernot</creator><creator>Rehner, Philipp</creator><creator>Gross, Joachim</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5211-5358</orcidid><orcidid>https://orcid.org/0000-0001-9750-5037</orcidid><orcidid>https://orcid.org/0000-0002-2552-4391</orcidid><orcidid>https://orcid.org/0000-0001-8632-357X</orcidid></search><sort><creationdate>20230920</creationdate><title>PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases</title><author>Esper, Timm ; Bauer, Gernot ; Rehner, Philipp ; Gross, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-f3a699cd33a28bcc2244eae09b1868616e7fb3f5aa02ab0733c9e64feb3bb5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Thermodynamics, Transport, and Fluid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esper, Timm</creatorcontrib><creatorcontrib>Bauer, Gernot</creatorcontrib><creatorcontrib>Rehner, Philipp</creatorcontrib><creatorcontrib>Gross, Joachim</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esper, Timm</au><au>Bauer, Gernot</au><au>Rehner, Philipp</au><au>Gross, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2023-09-20</date><risdate>2023</risdate><volume>62</volume><issue>37</issue><spage>15300</spage><epage>15310</epage><pages>15300-15310</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlier-removed data. All parameters are provided as JSON and CSV files.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c02255</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5211-5358</orcidid><orcidid>https://orcid.org/0000-0001-9750-5037</orcidid><orcidid>https://orcid.org/0000-0002-2552-4391</orcidid><orcidid>https://orcid.org/0000-0001-8632-357X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2023-09, Vol.62 (37), p.15300-15310
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_3c02255
source American Chemical Society Journals
subjects Thermodynamics, Transport, and Fluid Mechanics
title PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCP-SAFT%20Parameters%20of%20Pure%20Substances%20Using%20Large%20Experimental%20Databases&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Esper,%20Timm&rft.date=2023-09-20&rft.volume=62&rft.issue=37&rft.spage=15300&rft.epage=15310&rft.pages=15300-15310&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c02255&rft_dat=%3Cacs_cross%3Eh96278015%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true