Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica
Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + C...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2023-08, Vol.62 (34), p.13470-13478 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13478 |
---|---|
container_issue | 34 |
container_start_page | 13470 |
container_title | Industrial & engineering chemistry research |
container_volume | 62 |
creator | Cui, Ronghao Narayanan Nair, Arun Kumar Che Ruslan, Mohd Fuad Anwari Yang, Yafan Sun, Shuyu |
description | Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration. |
doi_str_mv | 10.1021/acs.iecr.3c01413 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_3c01413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a290574747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</originalsourceid><addsrcrecordid>eNp1UE1PAjEQbYwmInr32LsuTrdb2B4VPyAhkQQ9b6bdaSiBXdKuCfx7t8LVy0zyvvLyGLsXMBKQiye0ceTJhpG0IAohL9hAqBwyBYW6ZAMoyzJTZamu2U2MGwBQqigGbDNvOgoOrcctX4Z2T6HzFHnreLcmPqMDNsQf-BSDaRv-6tuDrxPwEnxPrI6xox33zZ96GShSYym5Z8e6T1v7rbd8lS7esiuH20h35z9k3-9vX9NZtvj8mE-fFxkKrbostbZSOSes1masc1HnOWlSpLE2KNEqg1r2oBHWTIytJ642hRuDLAUYK4cMTrk2tDEGctU--B2GYyWgSltV_VZV2qo6b9VbHk-WxGzan9D0Bf-X_wI-Z26L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Cui, Ronghao ; Narayanan Nair, Arun Kumar ; Che Ruslan, Mohd Fuad Anwari ; Yang, Yafan ; Sun, Shuyu</creator><creatorcontrib>Cui, Ronghao ; Narayanan Nair, Arun Kumar ; Che Ruslan, Mohd Fuad Anwari ; Yang, Yafan ; Sun, Shuyu</creatorcontrib><description>Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c01413</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Materials and Interfaces</subject><ispartof>Industrial & engineering chemistry research, 2023-08, Vol.62 (34), p.13470-13478</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</citedby><cites>FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</cites><orcidid>0000-0002-3078-864X ; 0000-0002-2776-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c01413$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c01413$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cui, Ronghao</creatorcontrib><creatorcontrib>Narayanan Nair, Arun Kumar</creatorcontrib><creatorcontrib>Che Ruslan, Mohd Fuad Anwari</creatorcontrib><creatorcontrib>Yang, Yafan</creatorcontrib><creatorcontrib>Sun, Shuyu</creatorcontrib><title>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.</description><subject>Materials and Interfaces</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1PAjEQbYwmInr32LsuTrdb2B4VPyAhkQQ9b6bdaSiBXdKuCfx7t8LVy0zyvvLyGLsXMBKQiye0ceTJhpG0IAohL9hAqBwyBYW6ZAMoyzJTZamu2U2MGwBQqigGbDNvOgoOrcctX4Z2T6HzFHnreLcmPqMDNsQf-BSDaRv-6tuDrxPwEnxPrI6xox33zZ96GShSYym5Z8e6T1v7rbd8lS7esiuH20h35z9k3-9vX9NZtvj8mE-fFxkKrbostbZSOSes1masc1HnOWlSpLE2KNEqg1r2oBHWTIytJ642hRuDLAUYK4cMTrk2tDEGctU--B2GYyWgSltV_VZV2qo6b9VbHk-WxGzan9D0Bf-X_wI-Z26L</recordid><startdate>20230830</startdate><enddate>20230830</enddate><creator>Cui, Ronghao</creator><creator>Narayanan Nair, Arun Kumar</creator><creator>Che Ruslan, Mohd Fuad Anwari</creator><creator>Yang, Yafan</creator><creator>Sun, Shuyu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3078-864X</orcidid><orcidid>https://orcid.org/0000-0002-2776-4006</orcidid></search><sort><creationdate>20230830</creationdate><title>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</title><author>Cui, Ronghao ; Narayanan Nair, Arun Kumar ; Che Ruslan, Mohd Fuad Anwari ; Yang, Yafan ; Sun, Shuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Ronghao</creatorcontrib><creatorcontrib>Narayanan Nair, Arun Kumar</creatorcontrib><creatorcontrib>Che Ruslan, Mohd Fuad Anwari</creatorcontrib><creatorcontrib>Yang, Yafan</creatorcontrib><creatorcontrib>Sun, Shuyu</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Ronghao</au><au>Narayanan Nair, Arun Kumar</au><au>Che Ruslan, Mohd Fuad Anwari</au><au>Yang, Yafan</au><au>Sun, Shuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2023-08-30</date><risdate>2023</risdate><volume>62</volume><issue>34</issue><spage>13470</spage><epage>13478</epage><pages>13470-13478</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c01413</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3078-864X</orcidid><orcidid>https://orcid.org/0000-0002-2776-4006</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2023-08, Vol.62 (34), p.13470-13478 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_3c01413 |
source | ACS_美国化学学会期刊(与NSTL共建) |
subjects | Materials and Interfaces |
title | Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Properties%20of%20the%20Hexane%20+%20Carbon%20Dioxide%20+%20Brine%20System%20in%20the%20Presence%20of%20Hydrophilic%20Silica&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Cui,%20Ronghao&rft.date=2023-08-30&rft.volume=62&rft.issue=34&rft.spage=13470&rft.epage=13478&rft.pages=13470-13478&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c01413&rft_dat=%3Cacs_cross%3Ea290574747%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |