Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica

Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2023-08, Vol.62 (34), p.13470-13478
Hauptverfasser: Cui, Ronghao, Narayanan Nair, Arun Kumar, Che Ruslan, Mohd Fuad Anwari, Yang, Yafan, Sun, Shuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13478
container_issue 34
container_start_page 13470
container_title Industrial & engineering chemistry research
container_volume 62
creator Cui, Ronghao
Narayanan Nair, Arun Kumar
Che Ruslan, Mohd Fuad Anwari
Yang, Yafan
Sun, Shuyu
description Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.
doi_str_mv 10.1021/acs.iecr.3c01413
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_3c01413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a290574747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</originalsourceid><addsrcrecordid>eNp1UE1PAjEQbYwmInr32LsuTrdb2B4VPyAhkQQ9b6bdaSiBXdKuCfx7t8LVy0zyvvLyGLsXMBKQiye0ceTJhpG0IAohL9hAqBwyBYW6ZAMoyzJTZamu2U2MGwBQqigGbDNvOgoOrcctX4Z2T6HzFHnreLcmPqMDNsQf-BSDaRv-6tuDrxPwEnxPrI6xox33zZ96GShSYym5Z8e6T1v7rbd8lS7esiuH20h35z9k3-9vX9NZtvj8mE-fFxkKrbostbZSOSes1masc1HnOWlSpLE2KNEqg1r2oBHWTIytJ642hRuDLAUYK4cMTrk2tDEGctU--B2GYyWgSltV_VZV2qo6b9VbHk-WxGzan9D0Bf-X_wI-Z26L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Cui, Ronghao ; Narayanan Nair, Arun Kumar ; Che Ruslan, Mohd Fuad Anwari ; Yang, Yafan ; Sun, Shuyu</creator><creatorcontrib>Cui, Ronghao ; Narayanan Nair, Arun Kumar ; Che Ruslan, Mohd Fuad Anwari ; Yang, Yafan ; Sun, Shuyu</creatorcontrib><description>Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c01413</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Materials and Interfaces</subject><ispartof>Industrial &amp; engineering chemistry research, 2023-08, Vol.62 (34), p.13470-13478</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</citedby><cites>FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</cites><orcidid>0000-0002-3078-864X ; 0000-0002-2776-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c01413$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c01413$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cui, Ronghao</creatorcontrib><creatorcontrib>Narayanan Nair, Arun Kumar</creatorcontrib><creatorcontrib>Che Ruslan, Mohd Fuad Anwari</creatorcontrib><creatorcontrib>Yang, Yafan</creatorcontrib><creatorcontrib>Sun, Shuyu</creatorcontrib><title>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.</description><subject>Materials and Interfaces</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1PAjEQbYwmInr32LsuTrdb2B4VPyAhkQQ9b6bdaSiBXdKuCfx7t8LVy0zyvvLyGLsXMBKQiye0ceTJhpG0IAohL9hAqBwyBYW6ZAMoyzJTZamu2U2MGwBQqigGbDNvOgoOrcctX4Z2T6HzFHnreLcmPqMDNsQf-BSDaRv-6tuDrxPwEnxPrI6xox33zZ96GShSYym5Z8e6T1v7rbd8lS7esiuH20h35z9k3-9vX9NZtvj8mE-fFxkKrbostbZSOSes1masc1HnOWlSpLE2KNEqg1r2oBHWTIytJ642hRuDLAUYK4cMTrk2tDEGctU--B2GYyWgSltV_VZV2qo6b9VbHk-WxGzan9D0Bf-X_wI-Z26L</recordid><startdate>20230830</startdate><enddate>20230830</enddate><creator>Cui, Ronghao</creator><creator>Narayanan Nair, Arun Kumar</creator><creator>Che Ruslan, Mohd Fuad Anwari</creator><creator>Yang, Yafan</creator><creator>Sun, Shuyu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3078-864X</orcidid><orcidid>https://orcid.org/0000-0002-2776-4006</orcidid></search><sort><creationdate>20230830</creationdate><title>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</title><author>Cui, Ronghao ; Narayanan Nair, Arun Kumar ; Che Ruslan, Mohd Fuad Anwari ; Yang, Yafan ; Sun, Shuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a195t-1520c35ff1c99b6921d22e9e5e9adba3ac5ba93d22b1cb7bcd7fdb4f603810bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Ronghao</creatorcontrib><creatorcontrib>Narayanan Nair, Arun Kumar</creatorcontrib><creatorcontrib>Che Ruslan, Mohd Fuad Anwari</creatorcontrib><creatorcontrib>Yang, Yafan</creatorcontrib><creatorcontrib>Sun, Shuyu</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Ronghao</au><au>Narayanan Nair, Arun Kumar</au><au>Che Ruslan, Mohd Fuad Anwari</au><au>Yang, Yafan</au><au>Sun, Shuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2023-08-30</date><risdate>2023</risdate><volume>62</volume><issue>34</issue><spage>13470</spage><epage>13478</epage><pages>13470-13478</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Molecular dynamics simulations were performed to understand the interfacial properties of brine (up to 5.4 mol/kg NaCl) and brine + silica systems in the presence of CO2, hexane, and their equimolar mixture under geological conditions. Simulation results of brine + CO2, brine + hexane, and brine + CO2 + hexane systems agree reasonably well with the theoretical results predicted using the density gradient theory based on the cubic-plus-association equation of state (with Debye–Hückel electrostatic term). In all these systems, the interfacial tension (IFT) increases linearly with increasing NaCl concentration. Here, simulated slopes of the NaCl concentration dependence of IFT are about 1.99 mN/(m mol kg–1), under all conditions. We observe a negative surface excess for NaCl, which may explain the increase in IFT with increasing NaCl concentration. The contact angle (CA) of H2O + CO2 + silica and brine + CO2 + silica systems increases with pressure and decreases with temperature. However, the CA of H2O + hexane + silica and brine + hexane + silica systems is nearly independent of temperature and pressure. These CAs are not significantly affected by the presence of CO2. An important result is that in all investigated systems, the CA increases with increasing salt content. Our simulated CA is in the ranges of 51.4–95.0°, 69.1–86.0°, and 72.0–87.9° for brine + CO2 + silica, brine + hexane + silica, and brine + CO2 + hexane + silica systems, respectively. The density profiles indicate that the positively charged hydrogen atom of the surface hydroxyl group attracts Cl– ions to the surface. In all investigated systems, the adhesion tensions decrease with increasing NaCl concentration.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c01413</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3078-864X</orcidid><orcidid>https://orcid.org/0000-0002-2776-4006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2023-08, Vol.62 (34), p.13470-13478
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_3c01413
source ACS_美国化学学会期刊(与NSTL共建)
subjects Materials and Interfaces
title Interfacial Properties of the Hexane + Carbon Dioxide + Brine System in the Presence of Hydrophilic Silica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Properties%20of%20the%20Hexane%20+%20Carbon%20Dioxide%20+%20Brine%20System%20in%20the%20Presence%20of%20Hydrophilic%20Silica&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Cui,%20Ronghao&rft.date=2023-08-30&rft.volume=62&rft.issue=34&rft.spage=13470&rft.epage=13478&rft.pages=13470-13478&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c01413&rft_dat=%3Cacs_cross%3Ea290574747%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true