Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models
We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2022-11, Vol.61 (46), p.17124-17136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17136 |
---|---|
container_issue | 46 |
container_start_page | 17124 |
container_title | Industrial & engineering chemistry research |
container_volume | 61 |
creator | Kim, Boeun Maravelias, Christos T. |
description | We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models. |
doi_str_mv | 10.1021/acs.iecr.2c02734 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_2c02734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d294394999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnae496gDqVZMtWjsX0JxDTQJqzkaVV7WBbRrIDfYE-dy2Sa0_Dzs4s7IfQIyUrShh9lsqvGlBuxRRhWZxcoQXljEScJPwaLYgQIuJC8Ft05_2REMJ5kizQ734awJ0aDxoXUtVND3gL0vVN_42NdfjQa3B-lL0Ozix40w3OnsI01oBz2w3TKMfG9rLFO3BzqZO9AmwNzmvoGhV8Z_WkQgjvVQ16akO_2OxwYTW0_h7dGNl6eLjoEh3eXr_yj2j7-b7JX7aRpGs-RiLV60pLlRIpWJaKOEsT4JKaTBqmDK-YWhujYsohUZRBAnHGMoCKaKl1lcVLRM53lbPeOzDl4JpOup-SkjJwLGeOZeBYXjjOladzJWyOdnLzn_7_-B_VpXrp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</title><source>ACS Publications</source><creator>Kim, Boeun ; Maravelias, Christos T.</creator><creatorcontrib>Kim, Boeun ; Maravelias, Christos T.</creatorcontrib><description>We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c02734</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Process Systems Engineering</subject><ispartof>Industrial & engineering chemistry research, 2022-11, Vol.61 (46), p.17124-17136</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</citedby><cites>FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</cites><orcidid>0000-0003-3963-3350 ; 0000-0002-4929-1748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c02734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c02734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kim, Boeun</creatorcontrib><creatorcontrib>Maravelias, Christos T.</creatorcontrib><title>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.</description><subject>Process Systems Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnae496gDqVZMtWjsX0JxDTQJqzkaVV7WBbRrIDfYE-dy2Sa0_Dzs4s7IfQIyUrShh9lsqvGlBuxRRhWZxcoQXljEScJPwaLYgQIuJC8Ft05_2REMJ5kizQ734awJ0aDxoXUtVND3gL0vVN_42NdfjQa3B-lL0Ozix40w3OnsI01oBz2w3TKMfG9rLFO3BzqZO9AmwNzmvoGhV8Z_WkQgjvVQ16akO_2OxwYTW0_h7dGNl6eLjoEh3eXr_yj2j7-b7JX7aRpGs-RiLV60pLlRIpWJaKOEsT4JKaTBqmDK-YWhujYsohUZRBAnHGMoCKaKl1lcVLRM53lbPeOzDl4JpOup-SkjJwLGeOZeBYXjjOladzJWyOdnLzn_7_-B_VpXrp</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Kim, Boeun</creator><creator>Maravelias, Christos T.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3963-3350</orcidid><orcidid>https://orcid.org/0000-0002-4929-1748</orcidid></search><sort><creationdate>20221123</creationdate><title>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</title><author>Kim, Boeun ; Maravelias, Christos T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Process Systems Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Boeun</creatorcontrib><creatorcontrib>Maravelias, Christos T.</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Boeun</au><au>Maravelias, Christos T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-11-23</date><risdate>2022</risdate><volume>61</volume><issue>46</issue><spage>17124</spage><epage>17136</epage><pages>17124-17136</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c02734</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3963-3350</orcidid><orcidid>https://orcid.org/0000-0002-4929-1748</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2022-11, Vol.61 (46), p.17124-17136 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_2c02734 |
source | ACS Publications |
subjects | Process Systems Engineering |
title | Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Machine%20Learning%20for%20Understanding%20and%20Improving%20the%20Computational%20Performance%20of%20Chemical%20Production%20Scheduling%20MIP%20Models&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kim,%20Boeun&rft.date=2022-11-23&rft.volume=61&rft.issue=46&rft.spage=17124&rft.epage=17136&rft.pages=17124-17136&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c02734&rft_dat=%3Cacs_cross%3Ed294394999%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |