Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models

We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-11, Vol.61 (46), p.17124-17136
Hauptverfasser: Kim, Boeun, Maravelias, Christos T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17136
container_issue 46
container_start_page 17124
container_title Industrial & engineering chemistry research
container_volume 61
creator Kim, Boeun
Maravelias, Christos T.
description We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.
doi_str_mv 10.1021/acs.iecr.2c02734
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_2c02734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d294394999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnae496gDqVZMtWjsX0JxDTQJqzkaVV7WBbRrIDfYE-dy2Sa0_Dzs4s7IfQIyUrShh9lsqvGlBuxRRhWZxcoQXljEScJPwaLYgQIuJC8Ft05_2REMJ5kizQ734awJ0aDxoXUtVND3gL0vVN_42NdfjQa3B-lL0Ozix40w3OnsI01oBz2w3TKMfG9rLFO3BzqZO9AmwNzmvoGhV8Z_WkQgjvVQ16akO_2OxwYTW0_h7dGNl6eLjoEh3eXr_yj2j7-b7JX7aRpGs-RiLV60pLlRIpWJaKOEsT4JKaTBqmDK-YWhujYsohUZRBAnHGMoCKaKl1lcVLRM53lbPeOzDl4JpOup-SkjJwLGeOZeBYXjjOladzJWyOdnLzn_7_-B_VpXrp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</title><source>ACS Publications</source><creator>Kim, Boeun ; Maravelias, Christos T.</creator><creatorcontrib>Kim, Boeun ; Maravelias, Christos T.</creatorcontrib><description>We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c02734</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Process Systems Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-11, Vol.61 (46), p.17124-17136</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</citedby><cites>FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</cites><orcidid>0000-0003-3963-3350 ; 0000-0002-4929-1748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c02734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c02734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kim, Boeun</creatorcontrib><creatorcontrib>Maravelias, Christos T.</creatorcontrib><title>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.</description><subject>Process Systems Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnae496gDqVZMtWjsX0JxDTQJqzkaVV7WBbRrIDfYE-dy2Sa0_Dzs4s7IfQIyUrShh9lsqvGlBuxRRhWZxcoQXljEScJPwaLYgQIuJC8Ft05_2REMJ5kizQ734awJ0aDxoXUtVND3gL0vVN_42NdfjQa3B-lL0Ozix40w3OnsI01oBz2w3TKMfG9rLFO3BzqZO9AmwNzmvoGhV8Z_WkQgjvVQ16akO_2OxwYTW0_h7dGNl6eLjoEh3eXr_yj2j7-b7JX7aRpGs-RiLV60pLlRIpWJaKOEsT4JKaTBqmDK-YWhujYsohUZRBAnHGMoCKaKl1lcVLRM53lbPeOzDl4JpOup-SkjJwLGeOZeBYXjjOladzJWyOdnLzn_7_-B_VpXrp</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Kim, Boeun</creator><creator>Maravelias, Christos T.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3963-3350</orcidid><orcidid>https://orcid.org/0000-0002-4929-1748</orcidid></search><sort><creationdate>20221123</creationdate><title>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</title><author>Kim, Boeun ; Maravelias, Christos T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a195t-86d9bdac60a827683764e5a1f7af2cf5b2c9ffc315e4c12e4e3727eeb0daddb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Process Systems Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Boeun</creatorcontrib><creatorcontrib>Maravelias, Christos T.</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Boeun</au><au>Maravelias, Christos T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-11-23</date><risdate>2022</risdate><volume>61</volume><issue>46</issue><spage>17124</spage><epage>17136</epage><pages>17124-17136</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c02734</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3963-3350</orcidid><orcidid>https://orcid.org/0000-0002-4929-1748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-11, Vol.61 (46), p.17124-17136
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_2c02734
source ACS Publications
subjects Process Systems Engineering
title Supervised Machine Learning for Understanding and Improving the Computational Performance of Chemical Production Scheduling MIP Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Machine%20Learning%20for%20Understanding%20and%20Improving%20the%20Computational%20Performance%20of%20Chemical%20Production%20Scheduling%20MIP%20Models&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kim,%20Boeun&rft.date=2022-11-23&rft.volume=61&rft.issue=46&rft.spage=17124&rft.epage=17136&rft.pages=17124-17136&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c02734&rft_dat=%3Cacs_cross%3Ed294394999%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true