Direct Conversion of Syngas to Olefins over a Hybrid CrZn Mixed Oxide/SAPO-34 Catalyst: Incorporation of Dopants for Increased Olefin Yield Stability

A bifunctional catalyst was developed utilizing a physical mixture of a CrZn-based mixed metal oxide and zeotype SAPO-34 for the direct conversion of syngas to short-chain olefins. A series of promoted CrZn-M (M = Fe, Ga, Al) mixed oxide catalysts were synthesized by coprecipitation and calcined at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-11, Vol.61 (46), p.17001-17011
Hauptverfasser: Pollefeyt, Glenn, Santos, Vera P., Yancey, David F., Nieskens, Davy, Kirilin, Alexey, Malek, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17011
container_issue 46
container_start_page 17001
container_title Industrial & engineering chemistry research
container_volume 61
creator Pollefeyt, Glenn
Santos, Vera P.
Yancey, David F.
Nieskens, Davy
Kirilin, Alexey
Malek, Andrzej
description A bifunctional catalyst was developed utilizing a physical mixture of a CrZn-based mixed metal oxide and zeotype SAPO-34 for the direct conversion of syngas to short-chain olefins. A series of promoted CrZn-M (M = Fe, Ga, Al) mixed oxide catalysts were synthesized by coprecipitation and calcined at different temperatures. CrZn-Fe-SAPO-34 catalysts calcined at 400 °C selectively converted syngas to C2–C4 olefins, while maintaining high CO conversion and olefin stability over time. The high olefin yield is ascribed to the stabilization effect of iron on inversed spinel phase ZnCr2O4 and to reduction of the detrimental ZnO phase formed during syngas conditions. At a higher calcination temperature of 600 °C, the stabilization effect is less pronounced. Ga and Al-doped CrZn oxides enabled high and stable olefin selectivity of the hybrid catalysts CrZn-Ga-SAPO-34 and CrZn-Al-SAPO-34, regardless the applied calcination temperature. Spectroscopy analysis demonstrated that these promoters are able to scavenge free ZnO formed on the catalyst, thus stabilizing the inversed spinel. This work demonstrates that a rational design of mixed metal oxide components of the hybrid catalyst process is required to maximize olefin yield and catalyst stability. The selection of dopants capable of stabilizing an inversed spinel phase and scavenging detrimental ZnO is a critical step in successful catalyst design.
doi_str_mv 10.1021/acs.iecr.2c02511
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_2c02511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a59415081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a210t-f9b4bafd3f326464f376a6988963ee63936c4972d08e39cd949c5f020fa405683</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqWwM_oBSGvHlzpsVbi0UlGQCgMskevYyFWwK9ug5kF4XxLalekfzv8dHX0AXGM0wSjHU6nixGoVJrlCOcP4BIwwy1HGEGWnYISEEBkTgp2Dixi3CCHGKB2BnzsbtEqw9O5bh2i9g97Adec-ZITJw6rVxroIfZ9CCRfdJtgGluHdwSe71w2s9rbR0_X8ucoIhaVMsu1iuoVLp3zY-SDTsfPO76RLERofhjBoGQf8rx--Wd02cJ3kxrY2dZfgzMg26qvjHYPXh_uXcpGtqsdlOV9lMscoZabY0I00DTEk55RTQ2Zc8kKIghOtOSkIV7SY5Q0SmhSqKWihmEE5MpIixgUZA3ToVcHHGLSpd8F-ytDVGNWD1rrXWg9a66PWHrk5IEOy9V_B9QP_f_8FyCp8gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Conversion of Syngas to Olefins over a Hybrid CrZn Mixed Oxide/SAPO-34 Catalyst: Incorporation of Dopants for Increased Olefin Yield Stability</title><source>ACS Publications</source><creator>Pollefeyt, Glenn ; Santos, Vera P. ; Yancey, David F. ; Nieskens, Davy ; Kirilin, Alexey ; Malek, Andrzej</creator><creatorcontrib>Pollefeyt, Glenn ; Santos, Vera P. ; Yancey, David F. ; Nieskens, Davy ; Kirilin, Alexey ; Malek, Andrzej</creatorcontrib><description>A bifunctional catalyst was developed utilizing a physical mixture of a CrZn-based mixed metal oxide and zeotype SAPO-34 for the direct conversion of syngas to short-chain olefins. A series of promoted CrZn-M (M = Fe, Ga, Al) mixed oxide catalysts were synthesized by coprecipitation and calcined at different temperatures. CrZn-Fe-SAPO-34 catalysts calcined at 400 °C selectively converted syngas to C2–C4 olefins, while maintaining high CO conversion and olefin stability over time. The high olefin yield is ascribed to the stabilization effect of iron on inversed spinel phase ZnCr2O4 and to reduction of the detrimental ZnO phase formed during syngas conditions. At a higher calcination temperature of 600 °C, the stabilization effect is less pronounced. Ga and Al-doped CrZn oxides enabled high and stable olefin selectivity of the hybrid catalysts CrZn-Ga-SAPO-34 and CrZn-Al-SAPO-34, regardless the applied calcination temperature. Spectroscopy analysis demonstrated that these promoters are able to scavenge free ZnO formed on the catalyst, thus stabilizing the inversed spinel. This work demonstrates that a rational design of mixed metal oxide components of the hybrid catalyst process is required to maximize olefin yield and catalyst stability. The selection of dopants capable of stabilizing an inversed spinel phase and scavenging detrimental ZnO is a critical step in successful catalyst design.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c02511</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-11, Vol.61 (46), p.17001-17011</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a210t-f9b4bafd3f326464f376a6988963ee63936c4972d08e39cd949c5f020fa405683</citedby><cites>FETCH-LOGICAL-a210t-f9b4bafd3f326464f376a6988963ee63936c4972d08e39cd949c5f020fa405683</cites><orcidid>0000-0002-1126-025X ; 0000-0001-9225-9551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c02511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c02511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Pollefeyt, Glenn</creatorcontrib><creatorcontrib>Santos, Vera P.</creatorcontrib><creatorcontrib>Yancey, David F.</creatorcontrib><creatorcontrib>Nieskens, Davy</creatorcontrib><creatorcontrib>Kirilin, Alexey</creatorcontrib><creatorcontrib>Malek, Andrzej</creatorcontrib><title>Direct Conversion of Syngas to Olefins over a Hybrid CrZn Mixed Oxide/SAPO-34 Catalyst: Incorporation of Dopants for Increased Olefin Yield Stability</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A bifunctional catalyst was developed utilizing a physical mixture of a CrZn-based mixed metal oxide and zeotype SAPO-34 for the direct conversion of syngas to short-chain olefins. A series of promoted CrZn-M (M = Fe, Ga, Al) mixed oxide catalysts were synthesized by coprecipitation and calcined at different temperatures. CrZn-Fe-SAPO-34 catalysts calcined at 400 °C selectively converted syngas to C2–C4 olefins, while maintaining high CO conversion and olefin stability over time. The high olefin yield is ascribed to the stabilization effect of iron on inversed spinel phase ZnCr2O4 and to reduction of the detrimental ZnO phase formed during syngas conditions. At a higher calcination temperature of 600 °C, the stabilization effect is less pronounced. Ga and Al-doped CrZn oxides enabled high and stable olefin selectivity of the hybrid catalysts CrZn-Ga-SAPO-34 and CrZn-Al-SAPO-34, regardless the applied calcination temperature. Spectroscopy analysis demonstrated that these promoters are able to scavenge free ZnO formed on the catalyst, thus stabilizing the inversed spinel. This work demonstrates that a rational design of mixed metal oxide components of the hybrid catalyst process is required to maximize olefin yield and catalyst stability. The selection of dopants capable of stabilizing an inversed spinel phase and scavenging detrimental ZnO is a critical step in successful catalyst design.</description><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqWwM_oBSGvHlzpsVbi0UlGQCgMskevYyFWwK9ug5kF4XxLalekfzv8dHX0AXGM0wSjHU6nixGoVJrlCOcP4BIwwy1HGEGWnYISEEBkTgp2Dixi3CCHGKB2BnzsbtEqw9O5bh2i9g97Adec-ZITJw6rVxroIfZ9CCRfdJtgGluHdwSe71w2s9rbR0_X8ucoIhaVMsu1iuoVLp3zY-SDTsfPO76RLERofhjBoGQf8rx--Wd02cJ3kxrY2dZfgzMg26qvjHYPXh_uXcpGtqsdlOV9lMscoZabY0I00DTEk55RTQ2Zc8kKIghOtOSkIV7SY5Q0SmhSqKWihmEE5MpIixgUZA3ToVcHHGLSpd8F-ytDVGNWD1rrXWg9a66PWHrk5IEOy9V_B9QP_f_8FyCp8gw</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Pollefeyt, Glenn</creator><creator>Santos, Vera P.</creator><creator>Yancey, David F.</creator><creator>Nieskens, Davy</creator><creator>Kirilin, Alexey</creator><creator>Malek, Andrzej</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1126-025X</orcidid><orcidid>https://orcid.org/0000-0001-9225-9551</orcidid></search><sort><creationdate>20221123</creationdate><title>Direct Conversion of Syngas to Olefins over a Hybrid CrZn Mixed Oxide/SAPO-34 Catalyst: Incorporation of Dopants for Increased Olefin Yield Stability</title><author>Pollefeyt, Glenn ; Santos, Vera P. ; Yancey, David F. ; Nieskens, Davy ; Kirilin, Alexey ; Malek, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a210t-f9b4bafd3f326464f376a6988963ee63936c4972d08e39cd949c5f020fa405683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollefeyt, Glenn</creatorcontrib><creatorcontrib>Santos, Vera P.</creatorcontrib><creatorcontrib>Yancey, David F.</creatorcontrib><creatorcontrib>Nieskens, Davy</creatorcontrib><creatorcontrib>Kirilin, Alexey</creatorcontrib><creatorcontrib>Malek, Andrzej</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollefeyt, Glenn</au><au>Santos, Vera P.</au><au>Yancey, David F.</au><au>Nieskens, Davy</au><au>Kirilin, Alexey</au><au>Malek, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Conversion of Syngas to Olefins over a Hybrid CrZn Mixed Oxide/SAPO-34 Catalyst: Incorporation of Dopants for Increased Olefin Yield Stability</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-11-23</date><risdate>2022</risdate><volume>61</volume><issue>46</issue><spage>17001</spage><epage>17011</epage><pages>17001-17011</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>A bifunctional catalyst was developed utilizing a physical mixture of a CrZn-based mixed metal oxide and zeotype SAPO-34 for the direct conversion of syngas to short-chain olefins. A series of promoted CrZn-M (M = Fe, Ga, Al) mixed oxide catalysts were synthesized by coprecipitation and calcined at different temperatures. CrZn-Fe-SAPO-34 catalysts calcined at 400 °C selectively converted syngas to C2–C4 olefins, while maintaining high CO conversion and olefin stability over time. The high olefin yield is ascribed to the stabilization effect of iron on inversed spinel phase ZnCr2O4 and to reduction of the detrimental ZnO phase formed during syngas conditions. At a higher calcination temperature of 600 °C, the stabilization effect is less pronounced. Ga and Al-doped CrZn oxides enabled high and stable olefin selectivity of the hybrid catalysts CrZn-Ga-SAPO-34 and CrZn-Al-SAPO-34, regardless the applied calcination temperature. Spectroscopy analysis demonstrated that these promoters are able to scavenge free ZnO formed on the catalyst, thus stabilizing the inversed spinel. This work demonstrates that a rational design of mixed metal oxide components of the hybrid catalyst process is required to maximize olefin yield and catalyst stability. The selection of dopants capable of stabilizing an inversed spinel phase and scavenging detrimental ZnO is a critical step in successful catalyst design.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c02511</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1126-025X</orcidid><orcidid>https://orcid.org/0000-0001-9225-9551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-11, Vol.61 (46), p.17001-17011
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_2c02511
source ACS Publications
subjects Kinetics, Catalysis, and Reaction Engineering
title Direct Conversion of Syngas to Olefins over a Hybrid CrZn Mixed Oxide/SAPO-34 Catalyst: Incorporation of Dopants for Increased Olefin Yield Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Conversion%20of%20Syngas%20to%20Olefins%20over%20a%20Hybrid%20CrZn%20Mixed%20Oxide/SAPO-34%20Catalyst:%20Incorporation%20of%20Dopants%20for%20Increased%20Olefin%20Yield%20Stability&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Pollefeyt,%20Glenn&rft.date=2022-11-23&rft.volume=61&rft.issue=46&rft.spage=17001&rft.epage=17011&rft.pages=17001-17011&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c02511&rft_dat=%3Cacs_cross%3Ea59415081%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true