Discrete Time Nonlinear Controller Design with Guaranteed Asymptotic Stability and Shorter Horizon Lengths

Ensuring asymptotic stability of the Nonlinear Model Predictive Control formulation is not trivial. Stabilizing ingredients such as terminal cost term and terminal set are necessary. Approaches available in the literature provide minimal degrees of freedom for the terminal set characterization. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-06, Vol.61 (25), p.8982-8992
Hauptverfasser: Gupta, Sowmya, Rajhans, Chinmay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8992
container_issue 25
container_start_page 8982
container_title Industrial & engineering chemistry research
container_volume 61
creator Gupta, Sowmya
Rajhans, Chinmay
description Ensuring asymptotic stability of the Nonlinear Model Predictive Control formulation is not trivial. Stabilizing ingredients such as terminal cost term and terminal set are necessary. Approaches available in the literature provide minimal degrees of freedom for the terminal set characterization. The current work presents a linear quadratic regulator based approach, which provides large degrees of freedom for enlarging the terminal set. The novel approach is suitable for a system with any state and input dimension. The proposed approach involves solving modified Lyapunov equations, which provide additive matrices as tuning parameters for enlarging the terminal set. The effectiveness of the proposed approach is demonstrated using a benchmark fermenter system and a two-state unstable system. Terminal sets obtained using the proposed approach are significantly larger than the approach from the literature, thereby reducing the prediction horizon length required for feasibility.
doi_str_mv 10.1021/acs.iecr.2c00950
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_2c00950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b982784513</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-826ab89866bc13e4f3a2d16af3d7900bb51154655a7e85944809414b6c96c3483</originalsourceid><addsrcrecordid>eNp1kMFOAjEURRujiYjuXfYDHHydaUtnSUDBhOgCXE86nTdQMrSkLTH49Q6Brau3uO_c3BxCnhmMGOTsVZs4smjCKDcApYAbMmAih0wAF7dkAEqpTCgl7slDjDsAEILzAdnNbDQBE9K13SP99K6zDnWgU-9S8F2Hgc4w2o2jPzZt6fyog3YJsaGTeNofkk_W0FXSte1sOlHtGrra-pB6buGD_fWOLtFt0jY-krtWdxGfrndIvt_f1tNFtvyaf0wny0wzWaRM5VLXqlRS1oYVyNtC5w2Tui2acQlQ14IxwaUQeoxKlJwrKDnjtTSlNAVXxZDApdcEH2PAtjoEu9fhVDGozq6q3lV1dlVdXfXIywU5Jzt_DK4f-P_7Hz3Cbno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete Time Nonlinear Controller Design with Guaranteed Asymptotic Stability and Shorter Horizon Lengths</title><source>ACS Publications</source><creator>Gupta, Sowmya ; Rajhans, Chinmay</creator><creatorcontrib>Gupta, Sowmya ; Rajhans, Chinmay</creatorcontrib><description>Ensuring asymptotic stability of the Nonlinear Model Predictive Control formulation is not trivial. Stabilizing ingredients such as terminal cost term and terminal set are necessary. Approaches available in the literature provide minimal degrees of freedom for the terminal set characterization. The current work presents a linear quadratic regulator based approach, which provides large degrees of freedom for enlarging the terminal set. The novel approach is suitable for a system with any state and input dimension. The proposed approach involves solving modified Lyapunov equations, which provide additive matrices as tuning parameters for enlarging the terminal set. The effectiveness of the proposed approach is demonstrated using a benchmark fermenter system and a two-state unstable system. Terminal sets obtained using the proposed approach are significantly larger than the approach from the literature, thereby reducing the prediction horizon length required for feasibility.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c00950</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Process Systems Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-06, Vol.61 (25), p.8982-8992</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-826ab89866bc13e4f3a2d16af3d7900bb51154655a7e85944809414b6c96c3483</cites><orcidid>0000-0001-8423-8208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c00950$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c00950$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Gupta, Sowmya</creatorcontrib><creatorcontrib>Rajhans, Chinmay</creatorcontrib><title>Discrete Time Nonlinear Controller Design with Guaranteed Asymptotic Stability and Shorter Horizon Lengths</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Ensuring asymptotic stability of the Nonlinear Model Predictive Control formulation is not trivial. Stabilizing ingredients such as terminal cost term and terminal set are necessary. Approaches available in the literature provide minimal degrees of freedom for the terminal set characterization. The current work presents a linear quadratic regulator based approach, which provides large degrees of freedom for enlarging the terminal set. The novel approach is suitable for a system with any state and input dimension. The proposed approach involves solving modified Lyapunov equations, which provide additive matrices as tuning parameters for enlarging the terminal set. The effectiveness of the proposed approach is demonstrated using a benchmark fermenter system and a two-state unstable system. Terminal sets obtained using the proposed approach are significantly larger than the approach from the literature, thereby reducing the prediction horizon length required for feasibility.</description><subject>Process Systems Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAjEURRujiYjuXfYDHHydaUtnSUDBhOgCXE86nTdQMrSkLTH49Q6Brau3uO_c3BxCnhmMGOTsVZs4smjCKDcApYAbMmAih0wAF7dkAEqpTCgl7slDjDsAEILzAdnNbDQBE9K13SP99K6zDnWgU-9S8F2Hgc4w2o2jPzZt6fyog3YJsaGTeNofkk_W0FXSte1sOlHtGrra-pB6buGD_fWOLtFt0jY-krtWdxGfrndIvt_f1tNFtvyaf0wny0wzWaRM5VLXqlRS1oYVyNtC5w2Tui2acQlQ14IxwaUQeoxKlJwrKDnjtTSlNAVXxZDApdcEH2PAtjoEu9fhVDGozq6q3lV1dlVdXfXIywU5Jzt_DK4f-P_7Hz3Cbno</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>Gupta, Sowmya</creator><creator>Rajhans, Chinmay</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8423-8208</orcidid></search><sort><creationdate>20220629</creationdate><title>Discrete Time Nonlinear Controller Design with Guaranteed Asymptotic Stability and Shorter Horizon Lengths</title><author>Gupta, Sowmya ; Rajhans, Chinmay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-826ab89866bc13e4f3a2d16af3d7900bb51154655a7e85944809414b6c96c3483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Process Systems Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Sowmya</creatorcontrib><creatorcontrib>Rajhans, Chinmay</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Sowmya</au><au>Rajhans, Chinmay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Time Nonlinear Controller Design with Guaranteed Asymptotic Stability and Shorter Horizon Lengths</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-06-29</date><risdate>2022</risdate><volume>61</volume><issue>25</issue><spage>8982</spage><epage>8992</epage><pages>8982-8992</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Ensuring asymptotic stability of the Nonlinear Model Predictive Control formulation is not trivial. Stabilizing ingredients such as terminal cost term and terminal set are necessary. Approaches available in the literature provide minimal degrees of freedom for the terminal set characterization. The current work presents a linear quadratic regulator based approach, which provides large degrees of freedom for enlarging the terminal set. The novel approach is suitable for a system with any state and input dimension. The proposed approach involves solving modified Lyapunov equations, which provide additive matrices as tuning parameters for enlarging the terminal set. The effectiveness of the proposed approach is demonstrated using a benchmark fermenter system and a two-state unstable system. Terminal sets obtained using the proposed approach are significantly larger than the approach from the literature, thereby reducing the prediction horizon length required for feasibility.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c00950</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8423-8208</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-06, Vol.61 (25), p.8982-8992
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_2c00950
source ACS Publications
subjects Process Systems Engineering
title Discrete Time Nonlinear Controller Design with Guaranteed Asymptotic Stability and Shorter Horizon Lengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Time%20Nonlinear%20Controller%20Design%20with%20Guaranteed%20Asymptotic%20Stability%20and%20Shorter%20Horizon%20Lengths&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Gupta,%20Sowmya&rft.date=2022-06-29&rft.volume=61&rft.issue=25&rft.spage=8982&rft.epage=8992&rft.pages=8982-8992&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c00950&rft_dat=%3Cacs_cross%3Eb982784513%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true