Liquid-Film Formation in a Hole under the Effect of Gravity

Packing towers are widely applied in several fields associated with heat or mass transfer. Experiments have suggested that perforated packings demonstrate good performance. To elucidate the liquid wetting mechanism on perforated packing surfaces, the liquid film in a hole has been focused on in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-02, Vol.61 (6), p.2600-2614
Hauptverfasser: Xu, Xiongwen, Liu, Yuehui, Zhu, Yeming, Liu, Jinping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2614
container_issue 6
container_start_page 2600
container_title Industrial & engineering chemistry research
container_volume 61
creator Xu, Xiongwen
Liu, Yuehui
Zhu, Yeming
Liu, Jinping
description Packing towers are widely applied in several fields associated with heat or mass transfer. Experiments have suggested that perforated packings demonstrate good performance. To elucidate the liquid wetting mechanism on perforated packing surfaces, the liquid film in a hole has been focused on in this study. The three-dimensional model of a static liquid-film shape in a hole is established based on the discrete form of the Young–Laplace equation, which is solved using the Broyden method under certain conditions (hole diameter, depth, and liquid volume). Furthermore, the critical minimum droplet volume for film formation is derived. To determine the hole parameters required for the formation of the liquid film, theoretical structural conditions with and without a solution are identified based on the numerical resolution corresponding to film formation and rupture, respectively. The results are verified via in-hole liquid-film experiments. Finally, a dimensionless theoretical model and its results are obtained.
doi_str_mv 10.1021/acs.iecr.1c04751
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_1c04751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d133234794</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-9e2f87b777a928c089b58b702a6c7f113e73ae60dec8161cc7bff52b8eb3616e3</originalsourceid><addsrcrecordid>eNp1j0tLxDAUhYMoWEf3LvMDbL1JmybFlQzTGaHgRtclTW8wQx-atML8e1tmtq7O4jw4HyGPDBIGnD1rExKHxifMQCYFuyIRExxiAZm4JhEopWKhlLgldyEcAUCILIvIS-V-ZtfGpet6Wo6-15MbB-oGqulh7JDOQ4ueTl9Id9aimeho6d7rXzed7smN1V3Ah4tuyGe5-9ge4up9_7Z9rWLN03SKC-RWyUZKqQuuDKiiEaqRwHVupGUsRZlqzKFFo1jOjJGNtYI3Cps0ZzmmGwLnXePHEDza-tu7XvtTzaBe4esFvl7h6wv8Unk6V1bnOM5-WA7-H_8Di41c2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Liquid-Film Formation in a Hole under the Effect of Gravity</title><source>ACS Publications</source><creator>Xu, Xiongwen ; Liu, Yuehui ; Zhu, Yeming ; Liu, Jinping</creator><creatorcontrib>Xu, Xiongwen ; Liu, Yuehui ; Zhu, Yeming ; Liu, Jinping</creatorcontrib><description>Packing towers are widely applied in several fields associated with heat or mass transfer. Experiments have suggested that perforated packings demonstrate good performance. To elucidate the liquid wetting mechanism on perforated packing surfaces, the liquid film in a hole has been focused on in this study. The three-dimensional model of a static liquid-film shape in a hole is established based on the discrete form of the Young–Laplace equation, which is solved using the Broyden method under certain conditions (hole diameter, depth, and liquid volume). Furthermore, the critical minimum droplet volume for film formation is derived. To determine the hole parameters required for the formation of the liquid film, theoretical structural conditions with and without a solution are identified based on the numerical resolution corresponding to film formation and rupture, respectively. The results are verified via in-hole liquid-film experiments. Finally, a dimensionless theoretical model and its results are obtained.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.1c04751</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-02, Vol.61 (6), p.2600-2614</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a233t-9e2f87b777a928c089b58b702a6c7f113e73ae60dec8161cc7bff52b8eb3616e3</cites><orcidid>0000-0002-5852-2659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c04751$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.1c04751$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Xu, Xiongwen</creatorcontrib><creatorcontrib>Liu, Yuehui</creatorcontrib><creatorcontrib>Zhu, Yeming</creatorcontrib><creatorcontrib>Liu, Jinping</creatorcontrib><title>Liquid-Film Formation in a Hole under the Effect of Gravity</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Packing towers are widely applied in several fields associated with heat or mass transfer. Experiments have suggested that perforated packings demonstrate good performance. To elucidate the liquid wetting mechanism on perforated packing surfaces, the liquid film in a hole has been focused on in this study. The three-dimensional model of a static liquid-film shape in a hole is established based on the discrete form of the Young–Laplace equation, which is solved using the Broyden method under certain conditions (hole diameter, depth, and liquid volume). Furthermore, the critical minimum droplet volume for film formation is derived. To determine the hole parameters required for the formation of the liquid film, theoretical structural conditions with and without a solution are identified based on the numerical resolution corresponding to film formation and rupture, respectively. The results are verified via in-hole liquid-film experiments. Finally, a dimensionless theoretical model and its results are obtained.</description><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxDAUhYMoWEf3LvMDbL1JmybFlQzTGaHgRtclTW8wQx-atML8e1tmtq7O4jw4HyGPDBIGnD1rExKHxifMQCYFuyIRExxiAZm4JhEopWKhlLgldyEcAUCILIvIS-V-ZtfGpet6Wo6-15MbB-oGqulh7JDOQ4ueTl9Id9aimeho6d7rXzed7smN1V3Ah4tuyGe5-9ge4up9_7Z9rWLN03SKC-RWyUZKqQuuDKiiEaqRwHVupGUsRZlqzKFFo1jOjJGNtYI3Cps0ZzmmGwLnXePHEDza-tu7XvtTzaBe4esFvl7h6wv8Unk6V1bnOM5-WA7-H_8Di41c2w</recordid><startdate>20220216</startdate><enddate>20220216</enddate><creator>Xu, Xiongwen</creator><creator>Liu, Yuehui</creator><creator>Zhu, Yeming</creator><creator>Liu, Jinping</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5852-2659</orcidid></search><sort><creationdate>20220216</creationdate><title>Liquid-Film Formation in a Hole under the Effect of Gravity</title><author>Xu, Xiongwen ; Liu, Yuehui ; Zhu, Yeming ; Liu, Jinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-9e2f87b777a928c089b58b702a6c7f113e73ae60dec8161cc7bff52b8eb3616e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Thermodynamics, Transport, and Fluid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiongwen</creatorcontrib><creatorcontrib>Liu, Yuehui</creatorcontrib><creatorcontrib>Zhu, Yeming</creatorcontrib><creatorcontrib>Liu, Jinping</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiongwen</au><au>Liu, Yuehui</au><au>Zhu, Yeming</au><au>Liu, Jinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid-Film Formation in a Hole under the Effect of Gravity</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-02-16</date><risdate>2022</risdate><volume>61</volume><issue>6</issue><spage>2600</spage><epage>2614</epage><pages>2600-2614</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Packing towers are widely applied in several fields associated with heat or mass transfer. Experiments have suggested that perforated packings demonstrate good performance. To elucidate the liquid wetting mechanism on perforated packing surfaces, the liquid film in a hole has been focused on in this study. The three-dimensional model of a static liquid-film shape in a hole is established based on the discrete form of the Young–Laplace equation, which is solved using the Broyden method under certain conditions (hole diameter, depth, and liquid volume). Furthermore, the critical minimum droplet volume for film formation is derived. To determine the hole parameters required for the formation of the liquid film, theoretical structural conditions with and without a solution are identified based on the numerical resolution corresponding to film formation and rupture, respectively. The results are verified via in-hole liquid-film experiments. Finally, a dimensionless theoretical model and its results are obtained.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.1c04751</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5852-2659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-02, Vol.61 (6), p.2600-2614
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_1c04751
source ACS Publications
subjects Thermodynamics, Transport, and Fluid Mechanics
title Liquid-Film Formation in a Hole under the Effect of Gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid-Film%20Formation%20in%20a%20Hole%20under%20the%20Effect%20of%20Gravity&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Xu,%20Xiongwen&rft.date=2022-02-16&rft.volume=61&rft.issue=6&rft.spage=2600&rft.epage=2614&rft.pages=2600-2614&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.1c04751&rft_dat=%3Cacs_cross%3Ed133234794%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true