Novel Gray Orthogonal Echo State Network Integrating the Process Mechanism for Dynamic Soft Sensor Development

Polypropylene is an important raw material for producing medical masks. The melt index (MI) is one of the most important quality indexes in the propylene polymerization (PP) production process, but it cannot be physically measured in real time. In consideration of the strong nonlinearity, obvious dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2021-10, Vol.60 (41), p.14955-14967
Hauptverfasser: Zhang, Bailun, Han, Yongming, Li, Chengfei, Geng, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14967
container_issue 41
container_start_page 14955
container_title Industrial & engineering chemistry research
container_volume 60
creator Zhang, Bailun
Han, Yongming
Li, Chengfei
Geng, Zhiqiang
description Polypropylene is an important raw material for producing medical masks. The melt index (MI) is one of the most important quality indexes in the propylene polymerization (PP) production process, but it cannot be physically measured in real time. In consideration of the strong nonlinearity, obvious dynamic characteristics, and complex mechanism of the PP process, the gray soft sensor model, which combines the merits of mechanism-driven modeling and data-driven modeling, has great research value. In this study, we propose a novel gray dynamic soft sensor modeling strategy. The influence factors of the MI are analyzed based on the process mechanism of PP production plants to select appropriate process variables and make necessary mechanism transformation. Then, the kernel principal component analysis and wavelet denoising are used to eliminate the multicollinearity and “noise” interference among process variables. Finally, an improved orthogonal sparse echo state network is used to construct the gray dynamic soft sensor model. The experimental results based on the real field data of the PP production plant show that the orthogonalization and sparseness of the reservoir can effectively enhance the performance of the reservoir and improve the operational efficiency. Meanwhile, the proposed dynamic soft sensing model has better prediction ability than the corresponding methods. Moreover, this study is of great significance to guide and optimize the PP production process.
doi_str_mv 10.1021/acs.iecr.1c02380
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_1c02380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a2498362</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-afa4427d09cfdbd2e587b82f5d0f7998df329972d0b970905e6e88b24e0a25d53</originalsourceid><addsrcrecordid>eNp10FFPwjAQB_DGaCKi7z72Azi8ldV1jwYRSRBM0Oela69syFrSVgnf3i3w6tMld_e_S36E3KcwSoGlj1KFUYPKj1IFbCzgggxSziDhkPFLMgAhRMKF4NfkJoQtAHCeZQNil-4Xd3Tm5ZGufKzdxlm5o1NVO7qOMiJdYjw4_03nNuLGy9jYDY010g_vFIZA31HV0jahpcZ5-nK0sm0UXTsT6Rpt6HvYvXD7Fm28JVdG7gLeneuQfL1OPydvyWI1m0-eF4lkAmIijcwylmsolNGVZshFXglmuAaTF4XQZsyKImcaqiKHAjg-oRAVyxAk45qPhwROd5V3IXg05d43rfTHMoWy9yo7r7L3Ks9eXeThFOknW_fjO4fw__ofNfVwfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel Gray Orthogonal Echo State Network Integrating the Process Mechanism for Dynamic Soft Sensor Development</title><source>American Chemical Society Journals</source><creator>Zhang, Bailun ; Han, Yongming ; Li, Chengfei ; Geng, Zhiqiang</creator><creatorcontrib>Zhang, Bailun ; Han, Yongming ; Li, Chengfei ; Geng, Zhiqiang</creatorcontrib><description>Polypropylene is an important raw material for producing medical masks. The melt index (MI) is one of the most important quality indexes in the propylene polymerization (PP) production process, but it cannot be physically measured in real time. In consideration of the strong nonlinearity, obvious dynamic characteristics, and complex mechanism of the PP process, the gray soft sensor model, which combines the merits of mechanism-driven modeling and data-driven modeling, has great research value. In this study, we propose a novel gray dynamic soft sensor modeling strategy. The influence factors of the MI are analyzed based on the process mechanism of PP production plants to select appropriate process variables and make necessary mechanism transformation. Then, the kernel principal component analysis and wavelet denoising are used to eliminate the multicollinearity and “noise” interference among process variables. Finally, an improved orthogonal sparse echo state network is used to construct the gray dynamic soft sensor model. The experimental results based on the real field data of the PP production plant show that the orthogonalization and sparseness of the reservoir can effectively enhance the performance of the reservoir and improve the operational efficiency. Meanwhile, the proposed dynamic soft sensing model has better prediction ability than the corresponding methods. Moreover, this study is of great significance to guide and optimize the PP production process.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.1c02380</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>General Research</subject><ispartof>Industrial &amp; engineering chemistry research, 2021-10, Vol.60 (41), p.14955-14967</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-afa4427d09cfdbd2e587b82f5d0f7998df329972d0b970905e6e88b24e0a25d53</citedby><cites>FETCH-LOGICAL-a280t-afa4427d09cfdbd2e587b82f5d0f7998df329972d0b970905e6e88b24e0a25d53</cites><orcidid>0000-0003-0647-3792 ; 0000-0003-3209-725X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c02380$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.1c02380$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Bailun</creatorcontrib><creatorcontrib>Han, Yongming</creatorcontrib><creatorcontrib>Li, Chengfei</creatorcontrib><creatorcontrib>Geng, Zhiqiang</creatorcontrib><title>Novel Gray Orthogonal Echo State Network Integrating the Process Mechanism for Dynamic Soft Sensor Development</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Polypropylene is an important raw material for producing medical masks. The melt index (MI) is one of the most important quality indexes in the propylene polymerization (PP) production process, but it cannot be physically measured in real time. In consideration of the strong nonlinearity, obvious dynamic characteristics, and complex mechanism of the PP process, the gray soft sensor model, which combines the merits of mechanism-driven modeling and data-driven modeling, has great research value. In this study, we propose a novel gray dynamic soft sensor modeling strategy. The influence factors of the MI are analyzed based on the process mechanism of PP production plants to select appropriate process variables and make necessary mechanism transformation. Then, the kernel principal component analysis and wavelet denoising are used to eliminate the multicollinearity and “noise” interference among process variables. Finally, an improved orthogonal sparse echo state network is used to construct the gray dynamic soft sensor model. The experimental results based on the real field data of the PP production plant show that the orthogonalization and sparseness of the reservoir can effectively enhance the performance of the reservoir and improve the operational efficiency. Meanwhile, the proposed dynamic soft sensing model has better prediction ability than the corresponding methods. Moreover, this study is of great significance to guide and optimize the PP production process.</description><subject>General Research</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10FFPwjAQB_DGaCKi7z72Azi8ldV1jwYRSRBM0Oela69syFrSVgnf3i3w6tMld_e_S36E3KcwSoGlj1KFUYPKj1IFbCzgggxSziDhkPFLMgAhRMKF4NfkJoQtAHCeZQNil-4Xd3Tm5ZGufKzdxlm5o1NVO7qOMiJdYjw4_03nNuLGy9jYDY010g_vFIZA31HV0jahpcZ5-nK0sm0UXTsT6Rpt6HvYvXD7Fm28JVdG7gLeneuQfL1OPydvyWI1m0-eF4lkAmIijcwylmsolNGVZshFXglmuAaTF4XQZsyKImcaqiKHAjg-oRAVyxAk45qPhwROd5V3IXg05d43rfTHMoWy9yo7r7L3Ks9eXeThFOknW_fjO4fw__ofNfVwfg</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Zhang, Bailun</creator><creator>Han, Yongming</creator><creator>Li, Chengfei</creator><creator>Geng, Zhiqiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0647-3792</orcidid><orcidid>https://orcid.org/0000-0003-3209-725X</orcidid></search><sort><creationdate>20211020</creationdate><title>Novel Gray Orthogonal Echo State Network Integrating the Process Mechanism for Dynamic Soft Sensor Development</title><author>Zhang, Bailun ; Han, Yongming ; Li, Chengfei ; Geng, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-afa4427d09cfdbd2e587b82f5d0f7998df329972d0b970905e6e88b24e0a25d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>General Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bailun</creatorcontrib><creatorcontrib>Han, Yongming</creatorcontrib><creatorcontrib>Li, Chengfei</creatorcontrib><creatorcontrib>Geng, Zhiqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bailun</au><au>Han, Yongming</au><au>Li, Chengfei</au><au>Geng, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Gray Orthogonal Echo State Network Integrating the Process Mechanism for Dynamic Soft Sensor Development</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>60</volume><issue>41</issue><spage>14955</spage><epage>14967</epage><pages>14955-14967</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Polypropylene is an important raw material for producing medical masks. The melt index (MI) is one of the most important quality indexes in the propylene polymerization (PP) production process, but it cannot be physically measured in real time. In consideration of the strong nonlinearity, obvious dynamic characteristics, and complex mechanism of the PP process, the gray soft sensor model, which combines the merits of mechanism-driven modeling and data-driven modeling, has great research value. In this study, we propose a novel gray dynamic soft sensor modeling strategy. The influence factors of the MI are analyzed based on the process mechanism of PP production plants to select appropriate process variables and make necessary mechanism transformation. Then, the kernel principal component analysis and wavelet denoising are used to eliminate the multicollinearity and “noise” interference among process variables. Finally, an improved orthogonal sparse echo state network is used to construct the gray dynamic soft sensor model. The experimental results based on the real field data of the PP production plant show that the orthogonalization and sparseness of the reservoir can effectively enhance the performance of the reservoir and improve the operational efficiency. Meanwhile, the proposed dynamic soft sensing model has better prediction ability than the corresponding methods. Moreover, this study is of great significance to guide and optimize the PP production process.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.1c02380</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0647-3792</orcidid><orcidid>https://orcid.org/0000-0003-3209-725X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2021-10, Vol.60 (41), p.14955-14967
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_1c02380
source American Chemical Society Journals
subjects General Research
title Novel Gray Orthogonal Echo State Network Integrating the Process Mechanism for Dynamic Soft Sensor Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Gray%20Orthogonal%20Echo%20State%20Network%20Integrating%20the%20Process%20Mechanism%20for%20Dynamic%20Soft%20Sensor%20Development&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Zhang,%20Bailun&rft.date=2021-10-20&rft.volume=60&rft.issue=41&rft.spage=14955&rft.epage=14967&rft.pages=14955-14967&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.1c02380&rft_dat=%3Cacs_cross%3Ea2498362%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true