Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles

Woody biomass waste (Pinus radiata) has been pyrolyzed in a laboratory-scale continuous pyrolysis plant, formed by two reactors connected in series: one continuous auger reactor, where the pyrolysis process is performed, and a tubular reactor for vapors upgrading, where the thermal treatment of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2021-12, Vol.60 (51), p.18627-18639
Hauptverfasser: Solar, Jon, Caballero, Blanca M, López-Urionabarrenechea, Alexander, Acha, Esther, Arias, Pedro L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18639
container_issue 51
container_start_page 18627
container_title Industrial & engineering chemistry research
container_volume 60
creator Solar, Jon
Caballero, Blanca M
López-Urionabarrenechea, Alexander
Acha, Esther
Arias, Pedro L
description Woody biomass waste (Pinus radiata) has been pyrolyzed in a laboratory-scale continuous pyrolysis plant, formed by two reactors connected in series: one continuous auger reactor, where the pyrolysis process is performed, and a tubular reactor for vapors upgrading, where the thermal treatment of the pyrolysis vapors occurs to promote further cracking. The pyrolysis reactor has four different heating zones that allows programming different temperature profiles. An extensive and detailed thermal study has been performed using temperatures covering the range from 300 °C to 900 °C in regimes of scaling temperature profiles and isothermal profiles. Both the peak temperature and the heating rate affect the pyrolysis fraction yields, as well as products composition. Higher temperatures result in higher gas yield and lower solid and liquid yields. Increasing the temperature also increases the fixed and elemental carbon contents of the charcoal obtained, and decreases its volatile matter and the hydrogen and oxygen contents. Concerning gas fraction, the share of CO and hydrogen rises with the temperature. The increase of temperature gives rise to heavier liquids with more polycyclic compounds and less monocyclic compounds. The changes in the composition of the charcoal and gas products are more prominent between 300 °C and 700 °C. Compared to nonisothermal experiments, isothermal experiments enhance the production of gases, to the detriment of solid and liquids, but do not affect product composition.
doi_str_mv 10.1021/acs.iecr.1c01932
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_1c01932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b055681933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-4cf966a2397c2261ed9b7dfdcdb53cdb53e22142a26dad0afe0d872f0f5253a33</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKt3j3kAtybZzXbXmxT7B4oWqwheljSZ2JRtoklK2Qfwvd21BU9eZmC-7xtmfghdUzKghNFbIcPAgPQDKgktU3aCepQzknCS8VPUI0VRJLwo-Dm6CGFDCOE8y3roe9F4VzfBBOw0HjsPIfoGv4kQARuLBV5KD3v8DEJG5_HexHVr23m8hK8d2GhEjacgorEf-N1ZCHd4ZnXdShK6lbPg4hr8trUJq_Cjs-ZvsvBOmxrCJTrTog5wdex99Dp-eBlNk_nTZDa6nyciZSwmmdRlnguWlkPJWE5Blauh0kqqFU9_CzBGMyZYroQiQgNRxZBpojnjqUjTPiKHvdK7EDzo6tObrfBNRUnVYaxajFWHsTpibCM3h0inbNrHbXvg__Yfj9d5sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles</title><source>American Chemical Society Journals</source><creator>Solar, Jon ; Caballero, Blanca M ; López-Urionabarrenechea, Alexander ; Acha, Esther ; Arias, Pedro L</creator><creatorcontrib>Solar, Jon ; Caballero, Blanca M ; López-Urionabarrenechea, Alexander ; Acha, Esther ; Arias, Pedro L</creatorcontrib><description>Woody biomass waste (Pinus radiata) has been pyrolyzed in a laboratory-scale continuous pyrolysis plant, formed by two reactors connected in series: one continuous auger reactor, where the pyrolysis process is performed, and a tubular reactor for vapors upgrading, where the thermal treatment of the pyrolysis vapors occurs to promote further cracking. The pyrolysis reactor has four different heating zones that allows programming different temperature profiles. An extensive and detailed thermal study has been performed using temperatures covering the range from 300 °C to 900 °C in regimes of scaling temperature profiles and isothermal profiles. Both the peak temperature and the heating rate affect the pyrolysis fraction yields, as well as products composition. Higher temperatures result in higher gas yield and lower solid and liquid yields. Increasing the temperature also increases the fixed and elemental carbon contents of the charcoal obtained, and decreases its volatile matter and the hydrogen and oxygen contents. Concerning gas fraction, the share of CO and hydrogen rises with the temperature. The increase of temperature gives rise to heavier liquids with more polycyclic compounds and less monocyclic compounds. The changes in the composition of the charcoal and gas products are more prominent between 300 °C and 700 °C. Compared to nonisothermal experiments, isothermal experiments enhance the production of gases, to the detriment of solid and liquids, but do not affect product composition.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.1c01932</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Applied Chemistry</subject><ispartof>Industrial &amp; engineering chemistry research, 2021-12, Vol.60 (51), p.18627-18639</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-4cf966a2397c2261ed9b7dfdcdb53cdb53e22142a26dad0afe0d872f0f5253a33</citedby><cites>FETCH-LOGICAL-a322t-4cf966a2397c2261ed9b7dfdcdb53cdb53e22142a26dad0afe0d872f0f5253a33</cites><orcidid>0000-0002-9397-6058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c01932$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.1c01932$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Solar, Jon</creatorcontrib><creatorcontrib>Caballero, Blanca M</creatorcontrib><creatorcontrib>López-Urionabarrenechea, Alexander</creatorcontrib><creatorcontrib>Acha, Esther</creatorcontrib><creatorcontrib>Arias, Pedro L</creatorcontrib><title>Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Woody biomass waste (Pinus radiata) has been pyrolyzed in a laboratory-scale continuous pyrolysis plant, formed by two reactors connected in series: one continuous auger reactor, where the pyrolysis process is performed, and a tubular reactor for vapors upgrading, where the thermal treatment of the pyrolysis vapors occurs to promote further cracking. The pyrolysis reactor has four different heating zones that allows programming different temperature profiles. An extensive and detailed thermal study has been performed using temperatures covering the range from 300 °C to 900 °C in regimes of scaling temperature profiles and isothermal profiles. Both the peak temperature and the heating rate affect the pyrolysis fraction yields, as well as products composition. Higher temperatures result in higher gas yield and lower solid and liquid yields. Increasing the temperature also increases the fixed and elemental carbon contents of the charcoal obtained, and decreases its volatile matter and the hydrogen and oxygen contents. Concerning gas fraction, the share of CO and hydrogen rises with the temperature. The increase of temperature gives rise to heavier liquids with more polycyclic compounds and less monocyclic compounds. The changes in the composition of the charcoal and gas products are more prominent between 300 °C and 700 °C. Compared to nonisothermal experiments, isothermal experiments enhance the production of gases, to the detriment of solid and liquids, but do not affect product composition.</description><subject>Applied Chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKt3j3kAtybZzXbXmxT7B4oWqwheljSZ2JRtoklK2Qfwvd21BU9eZmC-7xtmfghdUzKghNFbIcPAgPQDKgktU3aCepQzknCS8VPUI0VRJLwo-Dm6CGFDCOE8y3roe9F4VzfBBOw0HjsPIfoGv4kQARuLBV5KD3v8DEJG5_HexHVr23m8hK8d2GhEjacgorEf-N1ZCHd4ZnXdShK6lbPg4hr8trUJq_Cjs-ZvsvBOmxrCJTrTog5wdex99Dp-eBlNk_nTZDa6nyciZSwmmdRlnguWlkPJWE5Blauh0kqqFU9_CzBGMyZYroQiQgNRxZBpojnjqUjTPiKHvdK7EDzo6tObrfBNRUnVYaxajFWHsTpibCM3h0inbNrHbXvg__Yfj9d5sg</recordid><startdate>20211229</startdate><enddate>20211229</enddate><creator>Solar, Jon</creator><creator>Caballero, Blanca M</creator><creator>López-Urionabarrenechea, Alexander</creator><creator>Acha, Esther</creator><creator>Arias, Pedro L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9397-6058</orcidid></search><sort><creationdate>20211229</creationdate><title>Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles</title><author>Solar, Jon ; Caballero, Blanca M ; López-Urionabarrenechea, Alexander ; Acha, Esther ; Arias, Pedro L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-4cf966a2397c2261ed9b7dfdcdb53cdb53e22142a26dad0afe0d872f0f5253a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solar, Jon</creatorcontrib><creatorcontrib>Caballero, Blanca M</creatorcontrib><creatorcontrib>López-Urionabarrenechea, Alexander</creatorcontrib><creatorcontrib>Acha, Esther</creatorcontrib><creatorcontrib>Arias, Pedro L</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solar, Jon</au><au>Caballero, Blanca M</au><au>López-Urionabarrenechea, Alexander</au><au>Acha, Esther</au><au>Arias, Pedro L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2021-12-29</date><risdate>2021</risdate><volume>60</volume><issue>51</issue><spage>18627</spage><epage>18639</epage><pages>18627-18639</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Woody biomass waste (Pinus radiata) has been pyrolyzed in a laboratory-scale continuous pyrolysis plant, formed by two reactors connected in series: one continuous auger reactor, where the pyrolysis process is performed, and a tubular reactor for vapors upgrading, where the thermal treatment of the pyrolysis vapors occurs to promote further cracking. The pyrolysis reactor has four different heating zones that allows programming different temperature profiles. An extensive and detailed thermal study has been performed using temperatures covering the range from 300 °C to 900 °C in regimes of scaling temperature profiles and isothermal profiles. Both the peak temperature and the heating rate affect the pyrolysis fraction yields, as well as products composition. Higher temperatures result in higher gas yield and lower solid and liquid yields. Increasing the temperature also increases the fixed and elemental carbon contents of the charcoal obtained, and decreases its volatile matter and the hydrogen and oxygen contents. Concerning gas fraction, the share of CO and hydrogen rises with the temperature. The increase of temperature gives rise to heavier liquids with more polycyclic compounds and less monocyclic compounds. The changes in the composition of the charcoal and gas products are more prominent between 300 °C and 700 °C. Compared to nonisothermal experiments, isothermal experiments enhance the production of gases, to the detriment of solid and liquids, but do not affect product composition.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.1c01932</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9397-6058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2021-12, Vol.60 (51), p.18627-18639
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_1c01932
source American Chemical Society Journals
subjects Applied Chemistry
title Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolysis%20of%20Forestry%20Waste%20in%20a%20Screw%20Reactor%20with%20Four%20Sequential%20Heating%20Zones:%20Influence%20of%20Isothermal%20and%20Nonisothermal%20Profiles&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Solar,%20Jon&rft.date=2021-12-29&rft.volume=60&rft.issue=51&rft.spage=18627&rft.epage=18639&rft.pages=18627-18639&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.1c01932&rft_dat=%3Cacs_cross%3Eb055681933%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true