Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling
Four ionic liquids (ILs) consisting of the bis(trifluoromethylsulfonyl)imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2020-09, Vol.59 (35), p.15707-15717 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15717 |
---|---|
container_issue | 35 |
container_start_page | 15707 |
container_title | Industrial & engineering chemistry research |
container_volume | 59 |
creator | Lubben, Michael J Canales, Roberto I Lyu, Yuanyuan Held, Christoph Gonzalez-Miquel, Maria Stadtherr, Mark A Brennecke, Joan F |
description | Four ionic liquids (ILs) consisting of the bis(trifluoromethylsulfonyl)imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed. |
doi_str_mv | 10.1021/acs.iecr.0c02292 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_0c02292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d216063443</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiYjePfYHuDjtdtiuN0IQSTB6wPOmdlsoWVpsl0T_vUW4epqZzHsvLx8h9wxGDDh7VDqNnNFxBBo4r_kFGTDkUCAIvCQDkFIWKCVek5uUtgCAKMSArN9j2Lnk_JquNi50yrvDji6Cd5ou3dfBtdSGSGfffVS6d8HTYOkke1TvdKI2b3TSuf3m737Kwr2Jbmd8n6jyLX0Nrely-i25sqpL5u48h-TjebaavhTLt_liOlkWikvoCy3BWsHRGFD6Exla3bZjqTRjohrbsShVLerSoOK8FZqVjNmqLrlEUVUVw3JI4JSrY0gpGtvscx0VfxoGzRFUk0E1R1DNGVS2PJwsx882HKLPBf-X_wLWQm2N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</title><source>ACS Publications</source><creator>Lubben, Michael J ; Canales, Roberto I ; Lyu, Yuanyuan ; Held, Christoph ; Gonzalez-Miquel, Maria ; Stadtherr, Mark A ; Brennecke, Joan F</creator><creatorcontrib>Lubben, Michael J ; Canales, Roberto I ; Lyu, Yuanyuan ; Held, Christoph ; Gonzalez-Miquel, Maria ; Stadtherr, Mark A ; Brennecke, Joan F</creatorcontrib><description>Four ionic liquids (ILs) consisting of the bis(trifluoromethylsulfonyl)imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.0c02292</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Separations</subject><ispartof>Industrial & engineering chemistry research, 2020-09, Vol.59 (35), p.15707-15717</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</citedby><cites>FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</cites><orcidid>0000-0002-7935-2134 ; 0000-0002-2535-6527 ; 0000-0003-3978-8299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.0c02292$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.0c02292$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Lubben, Michael J</creatorcontrib><creatorcontrib>Canales, Roberto I</creatorcontrib><creatorcontrib>Lyu, Yuanyuan</creatorcontrib><creatorcontrib>Held, Christoph</creatorcontrib><creatorcontrib>Gonzalez-Miquel, Maria</creatorcontrib><creatorcontrib>Stadtherr, Mark A</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><title>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Four ionic liquids (ILs) consisting of the bis(trifluoromethylsulfonyl)imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.</description><subject>Separations</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiYjePfYHuDjtdtiuN0IQSTB6wPOmdlsoWVpsl0T_vUW4epqZzHsvLx8h9wxGDDh7VDqNnNFxBBo4r_kFGTDkUCAIvCQDkFIWKCVek5uUtgCAKMSArN9j2Lnk_JquNi50yrvDji6Cd5ou3dfBtdSGSGfffVS6d8HTYOkke1TvdKI2b3TSuf3m737Kwr2Jbmd8n6jyLX0Nrely-i25sqpL5u48h-TjebaavhTLt_liOlkWikvoCy3BWsHRGFD6Exla3bZjqTRjohrbsShVLerSoOK8FZqVjNmqLrlEUVUVw3JI4JSrY0gpGtvscx0VfxoGzRFUk0E1R1DNGVS2PJwsx882HKLPBf-X_wLWQm2N</recordid><startdate>20200902</startdate><enddate>20200902</enddate><creator>Lubben, Michael J</creator><creator>Canales, Roberto I</creator><creator>Lyu, Yuanyuan</creator><creator>Held, Christoph</creator><creator>Gonzalez-Miquel, Maria</creator><creator>Stadtherr, Mark A</creator><creator>Brennecke, Joan F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7935-2134</orcidid><orcidid>https://orcid.org/0000-0002-2535-6527</orcidid><orcidid>https://orcid.org/0000-0003-3978-8299</orcidid></search><sort><creationdate>20200902</creationdate><title>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</title><author>Lubben, Michael J ; Canales, Roberto I ; Lyu, Yuanyuan ; Held, Christoph ; Gonzalez-Miquel, Maria ; Stadtherr, Mark A ; Brennecke, Joan F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubben, Michael J</creatorcontrib><creatorcontrib>Canales, Roberto I</creatorcontrib><creatorcontrib>Lyu, Yuanyuan</creatorcontrib><creatorcontrib>Held, Christoph</creatorcontrib><creatorcontrib>Gonzalez-Miquel, Maria</creatorcontrib><creatorcontrib>Stadtherr, Mark A</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubben, Michael J</au><au>Canales, Roberto I</au><au>Lyu, Yuanyuan</au><au>Held, Christoph</au><au>Gonzalez-Miquel, Maria</au><au>Stadtherr, Mark A</au><au>Brennecke, Joan F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2020-09-02</date><risdate>2020</risdate><volume>59</volume><issue>35</issue><spage>15707</spage><epage>15717</epage><pages>15707-15717</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Four ionic liquids (ILs) consisting of the bis(trifluoromethylsulfonyl)imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.0c02292</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7935-2134</orcidid><orcidid>https://orcid.org/0000-0002-2535-6527</orcidid><orcidid>https://orcid.org/0000-0003-3978-8299</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2020-09, Vol.59 (35), p.15707-15717 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_0c02292 |
source | ACS Publications |
subjects | Separations |
title | Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promising%20Thiolanium%20Ionic%20Liquid%20for%20Extraction%20of%20Aromatics%20from%20Aliphatics:%20Experiments%20and%20Modeling&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lubben,%20Michael%20J&rft.date=2020-09-02&rft.volume=59&rft.issue=35&rft.spage=15707&rft.epage=15717&rft.pages=15707-15717&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.0c02292&rft_dat=%3Cacs_cross%3Ed216063443%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |