Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling

Four ionic liquids (ILs) consisting of the bis­(trifluoromethylsulfonyl)­imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2020-09, Vol.59 (35), p.15707-15717
Hauptverfasser: Lubben, Michael J, Canales, Roberto I, Lyu, Yuanyuan, Held, Christoph, Gonzalez-Miquel, Maria, Stadtherr, Mark A, Brennecke, Joan F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15717
container_issue 35
container_start_page 15707
container_title Industrial & engineering chemistry research
container_volume 59
creator Lubben, Michael J
Canales, Roberto I
Lyu, Yuanyuan
Held, Christoph
Gonzalez-Miquel, Maria
Stadtherr, Mark A
Brennecke, Joan F
description Four ionic liquids (ILs) consisting of the bis­(trifluoromethylsulfonyl)­imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis­(trifluoromethylsulfonyl)­imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.
doi_str_mv 10.1021/acs.iecr.0c02292
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_0c02292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d216063443</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiYjePfYHuDjtdtiuN0IQSTB6wPOmdlsoWVpsl0T_vUW4epqZzHsvLx8h9wxGDDh7VDqNnNFxBBo4r_kFGTDkUCAIvCQDkFIWKCVek5uUtgCAKMSArN9j2Lnk_JquNi50yrvDji6Cd5ou3dfBtdSGSGfffVS6d8HTYOkke1TvdKI2b3TSuf3m737Kwr2Jbmd8n6jyLX0Nrely-i25sqpL5u48h-TjebaavhTLt_liOlkWikvoCy3BWsHRGFD6Exla3bZjqTRjohrbsShVLerSoOK8FZqVjNmqLrlEUVUVw3JI4JSrY0gpGtvscx0VfxoGzRFUk0E1R1DNGVS2PJwsx882HKLPBf-X_wLWQm2N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</title><source>ACS Publications</source><creator>Lubben, Michael J ; Canales, Roberto I ; Lyu, Yuanyuan ; Held, Christoph ; Gonzalez-Miquel, Maria ; Stadtherr, Mark A ; Brennecke, Joan F</creator><creatorcontrib>Lubben, Michael J ; Canales, Roberto I ; Lyu, Yuanyuan ; Held, Christoph ; Gonzalez-Miquel, Maria ; Stadtherr, Mark A ; Brennecke, Joan F</creatorcontrib><description>Four ionic liquids (ILs) consisting of the bis­(trifluoromethylsulfonyl)­imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis­(trifluoromethylsulfonyl)­imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.0c02292</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Separations</subject><ispartof>Industrial &amp; engineering chemistry research, 2020-09, Vol.59 (35), p.15707-15717</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</citedby><cites>FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</cites><orcidid>0000-0002-7935-2134 ; 0000-0002-2535-6527 ; 0000-0003-3978-8299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.0c02292$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.0c02292$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Lubben, Michael J</creatorcontrib><creatorcontrib>Canales, Roberto I</creatorcontrib><creatorcontrib>Lyu, Yuanyuan</creatorcontrib><creatorcontrib>Held, Christoph</creatorcontrib><creatorcontrib>Gonzalez-Miquel, Maria</creatorcontrib><creatorcontrib>Stadtherr, Mark A</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><title>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Four ionic liquids (ILs) consisting of the bis­(trifluoromethylsulfonyl)­imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis­(trifluoromethylsulfonyl)­imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.</description><subject>Separations</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiYjePfYHuDjtdtiuN0IQSTB6wPOmdlsoWVpsl0T_vUW4epqZzHsvLx8h9wxGDDh7VDqNnNFxBBo4r_kFGTDkUCAIvCQDkFIWKCVek5uUtgCAKMSArN9j2Lnk_JquNi50yrvDji6Cd5ou3dfBtdSGSGfffVS6d8HTYOkke1TvdKI2b3TSuf3m737Kwr2Jbmd8n6jyLX0Nrely-i25sqpL5u48h-TjebaavhTLt_liOlkWikvoCy3BWsHRGFD6Exla3bZjqTRjohrbsShVLerSoOK8FZqVjNmqLrlEUVUVw3JI4JSrY0gpGtvscx0VfxoGzRFUk0E1R1DNGVS2PJwsx882HKLPBf-X_wLWQm2N</recordid><startdate>20200902</startdate><enddate>20200902</enddate><creator>Lubben, Michael J</creator><creator>Canales, Roberto I</creator><creator>Lyu, Yuanyuan</creator><creator>Held, Christoph</creator><creator>Gonzalez-Miquel, Maria</creator><creator>Stadtherr, Mark A</creator><creator>Brennecke, Joan F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7935-2134</orcidid><orcidid>https://orcid.org/0000-0002-2535-6527</orcidid><orcidid>https://orcid.org/0000-0003-3978-8299</orcidid></search><sort><creationdate>20200902</creationdate><title>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</title><author>Lubben, Michael J ; Canales, Roberto I ; Lyu, Yuanyuan ; Held, Christoph ; Gonzalez-Miquel, Maria ; Stadtherr, Mark A ; Brennecke, Joan F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-c80ff425ee0acb515fcdd68ac11476f643a9493e5a22d4c1311f7932854777153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubben, Michael J</creatorcontrib><creatorcontrib>Canales, Roberto I</creatorcontrib><creatorcontrib>Lyu, Yuanyuan</creatorcontrib><creatorcontrib>Held, Christoph</creatorcontrib><creatorcontrib>Gonzalez-Miquel, Maria</creatorcontrib><creatorcontrib>Stadtherr, Mark A</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubben, Michael J</au><au>Canales, Roberto I</au><au>Lyu, Yuanyuan</au><au>Held, Christoph</au><au>Gonzalez-Miquel, Maria</au><au>Stadtherr, Mark A</au><au>Brennecke, Joan F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2020-09-02</date><risdate>2020</risdate><volume>59</volume><issue>35</issue><spage>15707</spage><epage>15717</epage><pages>15707-15717</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Four ionic liquids (ILs) consisting of the bis­(trifluoromethylsulfonyl)­imide anion paired with a phosphonium, pyridinium, imidazolium, or thiolanium cation were investigated as potential solvents to separate aromatic from aliphatic compounds in a liquid–liquid extraction process. The thiolanium IL was chosen due to its structural similarity to sulfolane, which is the most widely used organic solvent for aromatic/aliphatic separation in the industry. Interestingly, ternary liquid–liquid equilibrium data shows that 1-n-butylthiolanium bis­(trifluoromethylsulfonyl)­imide performs as well as the equivalent imidazolium IL despite the fact that it is not aromatic and cannot use π–π interactions (which are available to imidazolium ILs) to enhance aromatic solubility and selectivity. Moreover, we provide quantification of the IL solubility in the organic-rich phase, which is on the order of 10–4 mole fraction. This quantity is important because it would represent IL loss and product contamination in a real extraction process; however, it is commonly reported to be nondetectable. The nonrandom two-liquid (NRTL), perturbed-chain statistical associating fluid theory (PC-SAFT), COSMO-RS, and COSMO-SAC models are appropriate for the mixtures explored, and each model’s strengths and weaknesses are discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.0c02292</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7935-2134</orcidid><orcidid>https://orcid.org/0000-0002-2535-6527</orcidid><orcidid>https://orcid.org/0000-0003-3978-8299</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2020-09, Vol.59 (35), p.15707-15717
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_0c02292
source ACS Publications
subjects Separations
title Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promising%20Thiolanium%20Ionic%20Liquid%20for%20Extraction%20of%20Aromatics%20from%20Aliphatics:%20Experiments%20and%20Modeling&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lubben,%20Michael%20J&rft.date=2020-09-02&rft.volume=59&rft.issue=35&rft.spage=15707&rft.epage=15717&rft.pages=15707-15717&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.0c02292&rft_dat=%3Cacs_cross%3Ed216063443%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true