Fluid–Solid Reaction Kinetics for Solids of Nonbasic Geometries: Comparison of the Sohn–Wall Method and the Shape-Factor Method

The shape of solids undergoing a reaction with a fluid influences how the reaction proceeds with conversion. Complex numerical solutions are needed in general to calculate the conversion–time relation for reactions involving nonbasic solids. This paper presents two simplified, although approximate,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2020-04, Vol.59 (13), p.5720-5724
Hauptverfasser: Sohn, H. Y, Roy, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5724
container_issue 13
container_start_page 5720
container_title Industrial & engineering chemistry research
container_volume 59
creator Sohn, H. Y
Roy, S
description The shape of solids undergoing a reaction with a fluid influences how the reaction proceeds with conversion. Complex numerical solutions are needed in general to calculate the conversion–time relation for reactions involving nonbasic solids. This paper presents two simplified, although approximate, methods for obtaining conversion–time relations for such solids. In the shape-factor method, a shape factor is determined for a nonporous solid of the same shape reacting under interfacial reaction control and this shape factor is used to predict the conversion–time relation under pore-diffusion control. In the Sohn–Wall method, the progress of the reaction front under pore-diffusion control is simplified so that a closed-form equation approximately describing its position, and thus the conversion, may be found. Good agreement was observed between the exact numerical solution of nonbasic solids and these two approximate methods. Either of these methods can be combined with Sohn’s law of fluid–solid reactions to describe the overall conversion–time relationship of a fluid–solid reaction under a simultaneous rate control by chemical reaction and pore diffusion.
doi_str_mv 10.1021/acs.iecr.0c00155
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_0c00155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c49259596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-7fdad779cde5177e154df58853138e4c69c3bbe4b4893dac092801d53fd623853</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqGwZ-kDkDJO4sZhhypaEAUkfsQycuyJ4iqNKztdsEPiCNyQk-CQblnN4r3vzcwj5JzBlEHCLqXyU4PKTUEBMM4PSMR4AjGHjB-SCIQQMReCH5MT79cAwHmWReRr0e6M_vn8frGt0fQZpeqN7ei96bA3ytPaOvqneWpr-mi7Snqj6BLtBntn0F_Rud1spTM-YMHSNxiApguZ77Jt6QP2jdVUdnqUGrnFeBHWhOBROyVHtWw9nu3nhLwtbl7nt_HqaXk3v17FMhHQx3mtpc7zQmnkLM-R8UzXw0spSwVmalaotKowqzJRpFoqKALGNE9rPUvSYJsQGHOVs947rMutMxvpPkoG5VBiGUoshxLLfYkBuRiRQVnbnevCgf_bfwFJt3j-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluid–Solid Reaction Kinetics for Solids of Nonbasic Geometries: Comparison of the Sohn–Wall Method and the Shape-Factor Method</title><source>American Chemical Society Journals</source><creator>Sohn, H. Y ; Roy, S</creator><creatorcontrib>Sohn, H. Y ; Roy, S</creatorcontrib><description>The shape of solids undergoing a reaction with a fluid influences how the reaction proceeds with conversion. Complex numerical solutions are needed in general to calculate the conversion–time relation for reactions involving nonbasic solids. This paper presents two simplified, although approximate, methods for obtaining conversion–time relations for such solids. In the shape-factor method, a shape factor is determined for a nonporous solid of the same shape reacting under interfacial reaction control and this shape factor is used to predict the conversion–time relation under pore-diffusion control. In the Sohn–Wall method, the progress of the reaction front under pore-diffusion control is simplified so that a closed-form equation approximately describing its position, and thus the conversion, may be found. Good agreement was observed between the exact numerical solution of nonbasic solids and these two approximate methods. Either of these methods can be combined with Sohn’s law of fluid–solid reactions to describe the overall conversion–time relationship of a fluid–solid reaction under a simultaneous rate control by chemical reaction and pore diffusion.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.0c00155</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2020-04, Vol.59 (13), p.5720-5724</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-7fdad779cde5177e154df58853138e4c69c3bbe4b4893dac092801d53fd623853</citedby><cites>FETCH-LOGICAL-a280t-7fdad779cde5177e154df58853138e4c69c3bbe4b4893dac092801d53fd623853</cites><orcidid>0000-0001-7979-4525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.0c00155$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.0c00155$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Sohn, H. Y</creatorcontrib><creatorcontrib>Roy, S</creatorcontrib><title>Fluid–Solid Reaction Kinetics for Solids of Nonbasic Geometries: Comparison of the Sohn–Wall Method and the Shape-Factor Method</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The shape of solids undergoing a reaction with a fluid influences how the reaction proceeds with conversion. Complex numerical solutions are needed in general to calculate the conversion–time relation for reactions involving nonbasic solids. This paper presents two simplified, although approximate, methods for obtaining conversion–time relations for such solids. In the shape-factor method, a shape factor is determined for a nonporous solid of the same shape reacting under interfacial reaction control and this shape factor is used to predict the conversion–time relation under pore-diffusion control. In the Sohn–Wall method, the progress of the reaction front under pore-diffusion control is simplified so that a closed-form equation approximately describing its position, and thus the conversion, may be found. Good agreement was observed between the exact numerical solution of nonbasic solids and these two approximate methods. Either of these methods can be combined with Sohn’s law of fluid–solid reactions to describe the overall conversion–time relationship of a fluid–solid reaction under a simultaneous rate control by chemical reaction and pore diffusion.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqGwZ-kDkDJO4sZhhypaEAUkfsQycuyJ4iqNKztdsEPiCNyQk-CQblnN4r3vzcwj5JzBlEHCLqXyU4PKTUEBMM4PSMR4AjGHjB-SCIQQMReCH5MT79cAwHmWReRr0e6M_vn8frGt0fQZpeqN7ei96bA3ytPaOvqneWpr-mi7Snqj6BLtBntn0F_Rud1spTM-YMHSNxiApguZ77Jt6QP2jdVUdnqUGrnFeBHWhOBROyVHtWw9nu3nhLwtbl7nt_HqaXk3v17FMhHQx3mtpc7zQmnkLM-R8UzXw0spSwVmalaotKowqzJRpFoqKALGNE9rPUvSYJsQGHOVs947rMutMxvpPkoG5VBiGUoshxLLfYkBuRiRQVnbnevCgf_bfwFJt3j-</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Sohn, H. Y</creator><creator>Roy, S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7979-4525</orcidid></search><sort><creationdate>20200401</creationdate><title>Fluid–Solid Reaction Kinetics for Solids of Nonbasic Geometries: Comparison of the Sohn–Wall Method and the Shape-Factor Method</title><author>Sohn, H. Y ; Roy, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-7fdad779cde5177e154df58853138e4c69c3bbe4b4893dac092801d53fd623853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, H. Y</creatorcontrib><creatorcontrib>Roy, S</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, H. Y</au><au>Roy, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid–Solid Reaction Kinetics for Solids of Nonbasic Geometries: Comparison of the Sohn–Wall Method and the Shape-Factor Method</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>59</volume><issue>13</issue><spage>5720</spage><epage>5724</epage><pages>5720-5724</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The shape of solids undergoing a reaction with a fluid influences how the reaction proceeds with conversion. Complex numerical solutions are needed in general to calculate the conversion–time relation for reactions involving nonbasic solids. This paper presents two simplified, although approximate, methods for obtaining conversion–time relations for such solids. In the shape-factor method, a shape factor is determined for a nonporous solid of the same shape reacting under interfacial reaction control and this shape factor is used to predict the conversion–time relation under pore-diffusion control. In the Sohn–Wall method, the progress of the reaction front under pore-diffusion control is simplified so that a closed-form equation approximately describing its position, and thus the conversion, may be found. Good agreement was observed between the exact numerical solution of nonbasic solids and these two approximate methods. Either of these methods can be combined with Sohn’s law of fluid–solid reactions to describe the overall conversion–time relationship of a fluid–solid reaction under a simultaneous rate control by chemical reaction and pore diffusion.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.0c00155</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7979-4525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2020-04, Vol.59 (13), p.5720-5724
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_0c00155
source American Chemical Society Journals
title Fluid–Solid Reaction Kinetics for Solids of Nonbasic Geometries: Comparison of the Sohn–Wall Method and the Shape-Factor Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%E2%80%93Solid%20Reaction%20Kinetics%20for%20Solids%20of%20Nonbasic%20Geometries:%20Comparison%20of%20the%20Sohn%E2%80%93Wall%20Method%20and%20the%20Shape-Factor%20Method&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Sohn,%20H.%20Y&rft.date=2020-04-01&rft.volume=59&rft.issue=13&rft.spage=5720&rft.epage=5724&rft.pages=5720-5724&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.0c00155&rft_dat=%3Cacs_cross%3Ec49259596%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true