A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment

Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-07, Vol.55 (13), p.9109-9118
Hauptverfasser: Mangold-Döring, Annika, Grimard, Chelsea, Green, Derek, Petersen, Stephanie, Nichols, John W, Hogan, Natacha, Weber, Lynn, Hollert, Henner, Hecker, Markus, Brinkmann, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9118
container_issue 13
container_start_page 9109
container_title Environmental science & technology
container_volume 55
creator Mangold-Döring, Annika
Grimard, Chelsea
Green, Derek
Petersen, Stephanie
Nichols, John W
Hogan, Natacha
Weber, Lynn
Hollert, Henner
Hecker, Markus
Brinkmann, Markus
description Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This “top-down” approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a “bottom-up” multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.
doi_str_mv 10.1021/acs.est.1c02055
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_est_1c02055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c127753945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-c150a0993f373fd4adfee17a49a234afdb6b5c5d8652de0b3f79f166c741fe3c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3iR3affSNO16LMNfsCnoBMFDSdMXl61tStOK_vd2bHrz9C6fzxfeh5BLBj6DgE2lcj66zmcKAhDiiIyZCMATM8GOyRiAcS_h0duInDm3AYCAw-yUjHjIIpFEwZi8p_TRfmJJl33ZGdegMujoyn4ZZbemxs4ourQFlqb-oGnTtFaqNTU1fembxrYdtZrO11gZJUv6bNyWps6hcxXW3Tk50bJ0eHG4E_J6e7Oa33uLp7uHebrwJI_DzlNMgIQk4ZrHXBehLDQii2WYyICHUhd5lAslilkkggIh5zpONIsiFYdMI1d8Qqb7XdVa51rUWdOaSrbfGYNslykbMmVDpuyQaTCu9kbT5xUWf_xvlwG43gM7c2P7th4e-HfuB-cldL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mangold-Döring, Annika ; Grimard, Chelsea ; Green, Derek ; Petersen, Stephanie ; Nichols, John W ; Hogan, Natacha ; Weber, Lynn ; Hollert, Henner ; Hecker, Markus ; Brinkmann, Markus</creator><creatorcontrib>Mangold-Döring, Annika ; Grimard, Chelsea ; Green, Derek ; Petersen, Stephanie ; Nichols, John W ; Hogan, Natacha ; Weber, Lynn ; Hollert, Henner ; Hecker, Markus ; Brinkmann, Markus</creatorcontrib><description>Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This “top-down” approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a “bottom-up” multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c02055</identifier><identifier>PMID: 34165962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Canada ; Ecotoxicology and Public Health ; Fishes ; Models, Biological ; Risk Assessment ; Toxicokinetics</subject><ispartof>Environmental science &amp; technology, 2021-07, Vol.55 (13), p.9109-9118</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-c150a0993f373fd4adfee17a49a234afdb6b5c5d8652de0b3f79f166c741fe3c3</citedby><cites>FETCH-LOGICAL-a374t-c150a0993f373fd4adfee17a49a234afdb6b5c5d8652de0b3f79f166c741fe3c3</cites><orcidid>0000-0002-6701-308X ; 0000-0002-4985-263X ; 0000-0002-8189-0599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c02055$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c02055$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34165962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangold-Döring, Annika</creatorcontrib><creatorcontrib>Grimard, Chelsea</creatorcontrib><creatorcontrib>Green, Derek</creatorcontrib><creatorcontrib>Petersen, Stephanie</creatorcontrib><creatorcontrib>Nichols, John W</creatorcontrib><creatorcontrib>Hogan, Natacha</creatorcontrib><creatorcontrib>Weber, Lynn</creatorcontrib><creatorcontrib>Hollert, Henner</creatorcontrib><creatorcontrib>Hecker, Markus</creatorcontrib><creatorcontrib>Brinkmann, Markus</creatorcontrib><title>A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This “top-down” approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a “bottom-up” multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.</description><subject>Animals</subject><subject>Canada</subject><subject>Ecotoxicology and Public Health</subject><subject>Fishes</subject><subject>Models, Biological</subject><subject>Risk Assessment</subject><subject>Toxicokinetics</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3iR3affSNO16LMNfsCnoBMFDSdMXl61tStOK_vd2bHrz9C6fzxfeh5BLBj6DgE2lcj66zmcKAhDiiIyZCMATM8GOyRiAcS_h0duInDm3AYCAw-yUjHjIIpFEwZi8p_TRfmJJl33ZGdegMujoyn4ZZbemxs4ourQFlqb-oGnTtFaqNTU1fembxrYdtZrO11gZJUv6bNyWps6hcxXW3Tk50bJ0eHG4E_J6e7Oa33uLp7uHebrwJI_DzlNMgIQk4ZrHXBehLDQii2WYyICHUhd5lAslilkkggIh5zpONIsiFYdMI1d8Qqb7XdVa51rUWdOaSrbfGYNslykbMmVDpuyQaTCu9kbT5xUWf_xvlwG43gM7c2P7th4e-HfuB-cldL4</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Mangold-Döring, Annika</creator><creator>Grimard, Chelsea</creator><creator>Green, Derek</creator><creator>Petersen, Stephanie</creator><creator>Nichols, John W</creator><creator>Hogan, Natacha</creator><creator>Weber, Lynn</creator><creator>Hollert, Henner</creator><creator>Hecker, Markus</creator><creator>Brinkmann, Markus</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6701-308X</orcidid><orcidid>https://orcid.org/0000-0002-4985-263X</orcidid><orcidid>https://orcid.org/0000-0002-8189-0599</orcidid></search><sort><creationdate>20210706</creationdate><title>A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment</title><author>Mangold-Döring, Annika ; Grimard, Chelsea ; Green, Derek ; Petersen, Stephanie ; Nichols, John W ; Hogan, Natacha ; Weber, Lynn ; Hollert, Henner ; Hecker, Markus ; Brinkmann, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-c150a0993f373fd4adfee17a49a234afdb6b5c5d8652de0b3f79f166c741fe3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Canada</topic><topic>Ecotoxicology and Public Health</topic><topic>Fishes</topic><topic>Models, Biological</topic><topic>Risk Assessment</topic><topic>Toxicokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangold-Döring, Annika</creatorcontrib><creatorcontrib>Grimard, Chelsea</creatorcontrib><creatorcontrib>Green, Derek</creatorcontrib><creatorcontrib>Petersen, Stephanie</creatorcontrib><creatorcontrib>Nichols, John W</creatorcontrib><creatorcontrib>Hogan, Natacha</creatorcontrib><creatorcontrib>Weber, Lynn</creatorcontrib><creatorcontrib>Hollert, Henner</creatorcontrib><creatorcontrib>Hecker, Markus</creatorcontrib><creatorcontrib>Brinkmann, Markus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangold-Döring, Annika</au><au>Grimard, Chelsea</au><au>Green, Derek</au><au>Petersen, Stephanie</au><au>Nichols, John W</au><au>Hogan, Natacha</au><au>Weber, Lynn</au><au>Hollert, Henner</au><au>Hecker, Markus</au><au>Brinkmann, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>55</volume><issue>13</issue><spage>9109</spage><epage>9118</epage><pages>9109-9118</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This “top-down” approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a “bottom-up” multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34165962</pmid><doi>10.1021/acs.est.1c02055</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6701-308X</orcidid><orcidid>https://orcid.org/0000-0002-4985-263X</orcidid><orcidid>https://orcid.org/0000-0002-8189-0599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-07, Vol.55 (13), p.9109-9118
issn 0013-936X
1520-5851
language eng
recordid cdi_crossref_primary_10_1021_acs_est_1c02055
source MEDLINE; American Chemical Society Journals
subjects Animals
Canada
Ecotoxicology and Public Health
Fishes
Models, Biological
Risk Assessment
Toxicokinetics
title A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Multispecies%20Toxicokinetic%20Modeling%20Approach%20in%20Support%20of%20Chemical%20Risk%20Assessment&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Mangold-Do%CC%88ring,%20Annika&rft.date=2021-07-06&rft.volume=55&rft.issue=13&rft.spage=9109&rft.epage=9118&rft.pages=9109-9118&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c02055&rft_dat=%3Cacs_cross%3Ec127753945%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34165962&rfr_iscdi=true