Acid-Catalyzed Ring Opening of Furan in Aqueous Solution

The mechanism and energetics of furan decomposition via the opening of the five-membered ring structure in dilute acid solution were investigated using density functional Car–Parrinello molecular dynamics combined with metadynamics simulations. Diffusion of an acidic proton from the aqueous medium l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2018-04, Vol.32 (4), p.4139-4148
Hauptverfasser: Liang, Xiao, Haynes, Brian S, Montoya, Alejandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4148
container_issue 4
container_start_page 4139
container_title Energy & fuels
container_volume 32
creator Liang, Xiao
Haynes, Brian S
Montoya, Alejandro
description The mechanism and energetics of furan decomposition via the opening of the five-membered ring structure in dilute acid solution were investigated using density functional Car–Parrinello molecular dynamics combined with metadynamics simulations. Diffusion of an acidic proton from the aqueous medium leading to the formation of a protonated furan is found to be the rate-limiting step of the ring-opening process, with protonation at the Cα position being 7 kcal mol–1 less activated than that at the Cβ position. Protonation at the Cα position results in the formation of 2,5-dihydro-2-furanol or 2,3-dihydro-3-furanol via nucleophilic attack by a solvent molecule. Subsequent protonation of the furanols at the ring oxygen initiates the opening of the furanic ring, leading to the formation of 4-hydroxy-2-butenal.
doi_str_mv 10.1021/acs.energyfuels.7b03239
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_7b03239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f43811188</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-f2ce56eab6fad1fd739a6b2d3fc8d7cc75024d0edc1d049ee8485ba67ec0f4843</originalsourceid><addsrcrecordid>eNqFkM1OhDAUhRujiTj6DPIC4G0LtCwJcXSSSSbxZ01KezthgmVsYYFPL5OZhTtXZ3O-k5OPkEcKKQVGn5QOKTr0-9lO2IdUtMAZL69IRHMGSQ6svCYRSCkSKFh2S-5COABAwWUeEVnpziS1GlU__6CJ3zq3j3dHdKccbLyevHJx5-Lqe8JhCvH70E9jN7h7cmNVH_DhkivyuX7-qF-T7e5lU1fbRHGgY2KZxrxA1RZWGWqN4KUqWma41dIIrcXyLzOARlMDWYkoM5m3qhCowWYy4ysizrvaDyF4tM3Rd1_Kzw2F5iSgWQQ0fwQ0FwELyc_kqXAYJu-Wn_9Sv846Zmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acid-Catalyzed Ring Opening of Furan in Aqueous Solution</title><source>ACS Publications</source><creator>Liang, Xiao ; Haynes, Brian S ; Montoya, Alejandro</creator><creatorcontrib>Liang, Xiao ; Haynes, Brian S ; Montoya, Alejandro</creatorcontrib><description>The mechanism and energetics of furan decomposition via the opening of the five-membered ring structure in dilute acid solution were investigated using density functional Car–Parrinello molecular dynamics combined with metadynamics simulations. Diffusion of an acidic proton from the aqueous medium leading to the formation of a protonated furan is found to be the rate-limiting step of the ring-opening process, with protonation at the Cα position being 7 kcal mol–1 less activated than that at the Cβ position. Protonation at the Cα position results in the formation of 2,5-dihydro-2-furanol or 2,3-dihydro-3-furanol via nucleophilic attack by a solvent molecule. Subsequent protonation of the furanols at the ring oxygen initiates the opening of the furanic ring, leading to the formation of 4-hydroxy-2-butenal.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.7b03239</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2018-04, Vol.32 (4), p.4139-4148</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-f2ce56eab6fad1fd739a6b2d3fc8d7cc75024d0edc1d049ee8485ba67ec0f4843</citedby><cites>FETCH-LOGICAL-a301t-f2ce56eab6fad1fd739a6b2d3fc8d7cc75024d0edc1d049ee8485ba67ec0f4843</cites><orcidid>0000-0003-1201-9166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.7b03239$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.7b03239$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Haynes, Brian S</creatorcontrib><creatorcontrib>Montoya, Alejandro</creatorcontrib><title>Acid-Catalyzed Ring Opening of Furan in Aqueous Solution</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The mechanism and energetics of furan decomposition via the opening of the five-membered ring structure in dilute acid solution were investigated using density functional Car–Parrinello molecular dynamics combined with metadynamics simulations. Diffusion of an acidic proton from the aqueous medium leading to the formation of a protonated furan is found to be the rate-limiting step of the ring-opening process, with protonation at the Cα position being 7 kcal mol–1 less activated than that at the Cβ position. Protonation at the Cα position results in the formation of 2,5-dihydro-2-furanol or 2,3-dihydro-3-furanol via nucleophilic attack by a solvent molecule. Subsequent protonation of the furanols at the ring oxygen initiates the opening of the furanic ring, leading to the formation of 4-hydroxy-2-butenal.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OhDAUhRujiTj6DPIC4G0LtCwJcXSSSSbxZ01KezthgmVsYYFPL5OZhTtXZ3O-k5OPkEcKKQVGn5QOKTr0-9lO2IdUtMAZL69IRHMGSQ6svCYRSCkSKFh2S-5COABAwWUeEVnpziS1GlU__6CJ3zq3j3dHdKccbLyevHJx5-Lqe8JhCvH70E9jN7h7cmNVH_DhkivyuX7-qF-T7e5lU1fbRHGgY2KZxrxA1RZWGWqN4KUqWma41dIIrcXyLzOARlMDWYkoM5m3qhCowWYy4ysizrvaDyF4tM3Rd1_Kzw2F5iSgWQQ0fwQ0FwELyc_kqXAYJu-Wn_9Sv846Zmc</recordid><startdate>20180419</startdate><enddate>20180419</enddate><creator>Liang, Xiao</creator><creator>Haynes, Brian S</creator><creator>Montoya, Alejandro</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1201-9166</orcidid></search><sort><creationdate>20180419</creationdate><title>Acid-Catalyzed Ring Opening of Furan in Aqueous Solution</title><author>Liang, Xiao ; Haynes, Brian S ; Montoya, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-f2ce56eab6fad1fd739a6b2d3fc8d7cc75024d0edc1d049ee8485ba67ec0f4843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Haynes, Brian S</creatorcontrib><creatorcontrib>Montoya, Alejandro</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Haynes, Brian S</au><au>Montoya, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid-Catalyzed Ring Opening of Furan in Aqueous Solution</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2018-04-19</date><risdate>2018</risdate><volume>32</volume><issue>4</issue><spage>4139</spage><epage>4148</epage><pages>4139-4148</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The mechanism and energetics of furan decomposition via the opening of the five-membered ring structure in dilute acid solution were investigated using density functional Car–Parrinello molecular dynamics combined with metadynamics simulations. Diffusion of an acidic proton from the aqueous medium leading to the formation of a protonated furan is found to be the rate-limiting step of the ring-opening process, with protonation at the Cα position being 7 kcal mol–1 less activated than that at the Cβ position. Protonation at the Cα position results in the formation of 2,5-dihydro-2-furanol or 2,3-dihydro-3-furanol via nucleophilic attack by a solvent molecule. Subsequent protonation of the furanols at the ring oxygen initiates the opening of the furanic ring, leading to the formation of 4-hydroxy-2-butenal.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.7b03239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1201-9166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2018-04, Vol.32 (4), p.4139-4148
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_7b03239
source ACS Publications
title Acid-Catalyzed Ring Opening of Furan in Aqueous Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid-Catalyzed%20Ring%20Opening%20of%20Furan%20in%20Aqueous%20Solution&rft.jtitle=Energy%20&%20fuels&rft.au=Liang,%20Xiao&rft.date=2018-04-19&rft.volume=32&rft.issue=4&rft.spage=4139&rft.epage=4148&rft.pages=4139-4148&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.7b03239&rft_dat=%3Cacs_cross%3Ef43811188%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true