Experimental Research and Numerical Simulation on Fine Particulate Matter Removal by Foam Agglomeration Method

In this study, experiments were performed to investigate the effective removal of fine particulate matter (FPM) by the promising foam agglomeration method. Further, numerical simulation and thorough analysis were carried out based on the experimental data, and the population balance module was used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2017-09, Vol.31 (9), p.10206-10211
Hauptverfasser: An, Zewen, Gong, Mingxin, Zhang, Longlong, Guo, Qingjie, Liu, Yongzhuo, Jiang, Huawei, Li, Yanhui, Wang, Cuiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10211
container_issue 9
container_start_page 10206
container_title Energy & fuels
container_volume 31
creator An, Zewen
Gong, Mingxin
Zhang, Longlong
Guo, Qingjie
Liu, Yongzhuo
Jiang, Huawei
Li, Yanhui
Wang, Cuiping
description In this study, experiments were performed to investigate the effective removal of fine particulate matter (FPM) by the promising foam agglomeration method. Further, numerical simulation and thorough analysis were carried out based on the experimental data, and the population balance module was used as the agglomeration physical model. The results indicated that the aggregation size of FPM increased with the foam–liquid ratio because more bubbles with larger contact surface area played a major role. The viscosity of the spraying solution also contributed to the FPM agglomeration; however, extremely large viscosity had a negative influence on agglomeration for the growing solution flow resistance. Mechanism studies revealed the formation of agglomerates of FPM in foams is that FPM gets continuously adsorbed on the surface of the bubbles or droplets, and then the bubbles are broken when the force balance is destroyed between the gravity of the FPM cluster and the surface tension of the bubble, which causes the agglomeration of FPM into large particle clusters. The numerical simulation is in good agreement with the experimental results.
doi_str_mv 10.1021/acs.energyfuels.7b01182
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_7b01182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d00851925</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-c01f074cbd524567023bc993f1a631b637062b000a03dfc4e0f77fe259cafff53</originalsourceid><addsrcrecordid>eNqFkN1qwzAMhc3YYF23Z5hfIJ1sJ3FyWUq7Ddpt7Oc6OI7cpuSn2M5Y3n4u7cXuBgKBdD6hcwi5ZzBjwNmD0m6GHdrtaAZs3EyWwFjGL8iEJRyiBHh-SSaQZTKClMfX5Ma5PQCkIksmpFv-HNDWLXZeNfQdHSqrd1R1FX0Z2rDRYfxRt0OjfN13NNSq7pC-KetrfZwi3Sjv0Qa47b-DuhzpqlctnW-3TR9OnMAN-l1f3ZIroxqHd-c-JV-r5efiKVq_Pj4v5utICWA-0sAMyFiXVcLjJJXARanzXBimUsHKVMhgpQwmFIjK6BjBSGmQJ7lWxphETIk83dW2d86iKQ7BpLJjwaA4xlaE2Io_sRXn2AIpTuRRsO8H24U__6V-AWiBeZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental Research and Numerical Simulation on Fine Particulate Matter Removal by Foam Agglomeration Method</title><source>ACS Publications</source><creator>An, Zewen ; Gong, Mingxin ; Zhang, Longlong ; Guo, Qingjie ; Liu, Yongzhuo ; Jiang, Huawei ; Li, Yanhui ; Wang, Cuiping</creator><creatorcontrib>An, Zewen ; Gong, Mingxin ; Zhang, Longlong ; Guo, Qingjie ; Liu, Yongzhuo ; Jiang, Huawei ; Li, Yanhui ; Wang, Cuiping</creatorcontrib><description>In this study, experiments were performed to investigate the effective removal of fine particulate matter (FPM) by the promising foam agglomeration method. Further, numerical simulation and thorough analysis were carried out based on the experimental data, and the population balance module was used as the agglomeration physical model. The results indicated that the aggregation size of FPM increased with the foam–liquid ratio because more bubbles with larger contact surface area played a major role. The viscosity of the spraying solution also contributed to the FPM agglomeration; however, extremely large viscosity had a negative influence on agglomeration for the growing solution flow resistance. Mechanism studies revealed the formation of agglomerates of FPM in foams is that FPM gets continuously adsorbed on the surface of the bubbles or droplets, and then the bubbles are broken when the force balance is destroyed between the gravity of the FPM cluster and the surface tension of the bubble, which causes the agglomeration of FPM into large particle clusters. The numerical simulation is in good agreement with the experimental results.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.7b01182</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2017-09, Vol.31 (9), p.10206-10211</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-c01f074cbd524567023bc993f1a631b637062b000a03dfc4e0f77fe259cafff53</citedby><cites>FETCH-LOGICAL-a301t-c01f074cbd524567023bc993f1a631b637062b000a03dfc4e0f77fe259cafff53</cites><orcidid>0000-0002-4249-709X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.7b01182$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.7b01182$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>An, Zewen</creatorcontrib><creatorcontrib>Gong, Mingxin</creatorcontrib><creatorcontrib>Zhang, Longlong</creatorcontrib><creatorcontrib>Guo, Qingjie</creatorcontrib><creatorcontrib>Liu, Yongzhuo</creatorcontrib><creatorcontrib>Jiang, Huawei</creatorcontrib><creatorcontrib>Li, Yanhui</creatorcontrib><creatorcontrib>Wang, Cuiping</creatorcontrib><title>Experimental Research and Numerical Simulation on Fine Particulate Matter Removal by Foam Agglomeration Method</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>In this study, experiments were performed to investigate the effective removal of fine particulate matter (FPM) by the promising foam agglomeration method. Further, numerical simulation and thorough analysis were carried out based on the experimental data, and the population balance module was used as the agglomeration physical model. The results indicated that the aggregation size of FPM increased with the foam–liquid ratio because more bubbles with larger contact surface area played a major role. The viscosity of the spraying solution also contributed to the FPM agglomeration; however, extremely large viscosity had a negative influence on agglomeration for the growing solution flow resistance. Mechanism studies revealed the formation of agglomerates of FPM in foams is that FPM gets continuously adsorbed on the surface of the bubbles or droplets, and then the bubbles are broken when the force balance is destroyed between the gravity of the FPM cluster and the surface tension of the bubble, which causes the agglomeration of FPM into large particle clusters. The numerical simulation is in good agreement with the experimental results.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkN1qwzAMhc3YYF23Z5hfIJ1sJ3FyWUq7Ddpt7Oc6OI7cpuSn2M5Y3n4u7cXuBgKBdD6hcwi5ZzBjwNmD0m6GHdrtaAZs3EyWwFjGL8iEJRyiBHh-SSaQZTKClMfX5Ma5PQCkIksmpFv-HNDWLXZeNfQdHSqrd1R1FX0Z2rDRYfxRt0OjfN13NNSq7pC-KetrfZwi3Sjv0Qa47b-DuhzpqlctnW-3TR9OnMAN-l1f3ZIroxqHd-c-JV-r5efiKVq_Pj4v5utICWA-0sAMyFiXVcLjJJXARanzXBimUsHKVMhgpQwmFIjK6BjBSGmQJ7lWxphETIk83dW2d86iKQ7BpLJjwaA4xlaE2Io_sRXn2AIpTuRRsO8H24U__6V-AWiBeZM</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>An, Zewen</creator><creator>Gong, Mingxin</creator><creator>Zhang, Longlong</creator><creator>Guo, Qingjie</creator><creator>Liu, Yongzhuo</creator><creator>Jiang, Huawei</creator><creator>Li, Yanhui</creator><creator>Wang, Cuiping</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4249-709X</orcidid></search><sort><creationdate>20170921</creationdate><title>Experimental Research and Numerical Simulation on Fine Particulate Matter Removal by Foam Agglomeration Method</title><author>An, Zewen ; Gong, Mingxin ; Zhang, Longlong ; Guo, Qingjie ; Liu, Yongzhuo ; Jiang, Huawei ; Li, Yanhui ; Wang, Cuiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-c01f074cbd524567023bc993f1a631b637062b000a03dfc4e0f77fe259cafff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Zewen</creatorcontrib><creatorcontrib>Gong, Mingxin</creatorcontrib><creatorcontrib>Zhang, Longlong</creatorcontrib><creatorcontrib>Guo, Qingjie</creatorcontrib><creatorcontrib>Liu, Yongzhuo</creatorcontrib><creatorcontrib>Jiang, Huawei</creatorcontrib><creatorcontrib>Li, Yanhui</creatorcontrib><creatorcontrib>Wang, Cuiping</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Zewen</au><au>Gong, Mingxin</au><au>Zhang, Longlong</au><au>Guo, Qingjie</au><au>Liu, Yongzhuo</au><au>Jiang, Huawei</au><au>Li, Yanhui</au><au>Wang, Cuiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Research and Numerical Simulation on Fine Particulate Matter Removal by Foam Agglomeration Method</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>31</volume><issue>9</issue><spage>10206</spage><epage>10211</epage><pages>10206-10211</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>In this study, experiments were performed to investigate the effective removal of fine particulate matter (FPM) by the promising foam agglomeration method. Further, numerical simulation and thorough analysis were carried out based on the experimental data, and the population balance module was used as the agglomeration physical model. The results indicated that the aggregation size of FPM increased with the foam–liquid ratio because more bubbles with larger contact surface area played a major role. The viscosity of the spraying solution also contributed to the FPM agglomeration; however, extremely large viscosity had a negative influence on agglomeration for the growing solution flow resistance. Mechanism studies revealed the formation of agglomerates of FPM in foams is that FPM gets continuously adsorbed on the surface of the bubbles or droplets, and then the bubbles are broken when the force balance is destroyed between the gravity of the FPM cluster and the surface tension of the bubble, which causes the agglomeration of FPM into large particle clusters. The numerical simulation is in good agreement with the experimental results.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.7b01182</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4249-709X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2017-09, Vol.31 (9), p.10206-10211
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_7b01182
source ACS Publications
title Experimental Research and Numerical Simulation on Fine Particulate Matter Removal by Foam Agglomeration Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Research%20and%20Numerical%20Simulation%20on%20Fine%20Particulate%20Matter%20Removal%20by%20Foam%20Agglomeration%20Method&rft.jtitle=Energy%20&%20fuels&rft.au=An,%20Zewen&rft.date=2017-09-21&rft.volume=31&rft.issue=9&rft.spage=10206&rft.epage=10211&rft.pages=10206-10211&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.7b01182&rft_dat=%3Cacs_cross%3Ed00851925%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true