Microwave Air Plasma Applied to Naphthalene Thermal Conversion
In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2016-02, Vol.30 (2), p.1510-1516, Article acs.energyfuels.5b02451 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1516 |
---|---|
container_issue | 2 |
container_start_page | 1510 |
container_title | Energy & fuels |
container_volume | 30 |
creator | Medeiros, H. S Pilatau, A Nozhenko, O. S da Silva Sobrinho, A. S Petraconi Filho, G |
description | In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained. |
doi_str_mv | 10.1021/acs.energyfuels.5b02451 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_5b02451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a247618323</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqHwDfgHUsZ2Hs4GqYqAIpXHoqyjsTOmqdIkstui_j2p2gU7Vndzz8zVYexewFSAFA9ow5Q68t8Ht6M2TFMDMknFBYtEKiFOQRaXLAKt8xgymVyzmxDWAJApnUbs8a2xvv_BPfFZ4_lni2GDfDYMbUM13_b8HYfVdoXt-IIvV-Q32PKy7_bkQ9N3t-zKYRvo7pwT9vX8tCzn8eLj5bWcLWJUSm9j1HmRGKsKYQrldCIJsiRzzhpZq9xopzMiFFBYaVIjUWpjNCpX10ZYm5GasPx0dxwbgidXDb7ZoD9UAqqjhmrUUP3RUJ01jKQ6kcfCut_5btz5L_ULrcloyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</title><source>American Chemical Society Journals</source><creator>Medeiros, H. S ; Pilatau, A ; Nozhenko, O. S ; da Silva Sobrinho, A. S ; Petraconi Filho, G</creator><creatorcontrib>Medeiros, H. S ; Pilatau, A ; Nozhenko, O. S ; da Silva Sobrinho, A. S ; Petraconi Filho, G</creatorcontrib><description>In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.5b02451</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy & fuels, 2016-02, Vol.30 (2), p.1510-1516, Article acs.energyfuels.5b02451</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</citedby><cites>FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.5b02451$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.5b02451$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Medeiros, H. S</creatorcontrib><creatorcontrib>Pilatau, A</creatorcontrib><creatorcontrib>Nozhenko, O. S</creatorcontrib><creatorcontrib>da Silva Sobrinho, A. S</creatorcontrib><creatorcontrib>Petraconi Filho, G</creatorcontrib><title>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqHwDfgHUsZ2Hs4GqYqAIpXHoqyjsTOmqdIkstui_j2p2gU7Vndzz8zVYexewFSAFA9ow5Q68t8Ht6M2TFMDMknFBYtEKiFOQRaXLAKt8xgymVyzmxDWAJApnUbs8a2xvv_BPfFZ4_lni2GDfDYMbUM13_b8HYfVdoXt-IIvV-Q32PKy7_bkQ9N3t-zKYRvo7pwT9vX8tCzn8eLj5bWcLWJUSm9j1HmRGKsKYQrldCIJsiRzzhpZq9xopzMiFFBYaVIjUWpjNCpX10ZYm5GasPx0dxwbgidXDb7ZoD9UAqqjhmrUUP3RUJ01jKQ6kcfCut_5btz5L_ULrcloyw</recordid><startdate>20160218</startdate><enddate>20160218</enddate><creator>Medeiros, H. S</creator><creator>Pilatau, A</creator><creator>Nozhenko, O. S</creator><creator>da Silva Sobrinho, A. S</creator><creator>Petraconi Filho, G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160218</creationdate><title>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</title><author>Medeiros, H. S ; Pilatau, A ; Nozhenko, O. S ; da Silva Sobrinho, A. S ; Petraconi Filho, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medeiros, H. S</creatorcontrib><creatorcontrib>Pilatau, A</creatorcontrib><creatorcontrib>Nozhenko, O. S</creatorcontrib><creatorcontrib>da Silva Sobrinho, A. S</creatorcontrib><creatorcontrib>Petraconi Filho, G</creatorcontrib><collection>CrossRef</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medeiros, H. S</au><au>Pilatau, A</au><au>Nozhenko, O. S</au><au>da Silva Sobrinho, A. S</au><au>Petraconi Filho, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2016-02-18</date><risdate>2016</risdate><volume>30</volume><issue>2</issue><spage>1510</spage><epage>1516</epage><pages>1510-1516</pages><artnum>acs.energyfuels.5b02451</artnum><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.5b02451</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2016-02, Vol.30 (2), p.1510-1516, Article acs.energyfuels.5b02451 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_energyfuels_5b02451 |
source | American Chemical Society Journals |
title | Microwave Air Plasma Applied to Naphthalene Thermal Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Air%20Plasma%20Applied%20to%20Naphthalene%20Thermal%20Conversion&rft.jtitle=Energy%20&%20fuels&rft.au=Medeiros,%20H.%20S&rft.date=2016-02-18&rft.volume=30&rft.issue=2&rft.spage=1510&rft.epage=1516&rft.pages=1510-1516&rft.artnum=acs.energyfuels.5b02451&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.5b02451&rft_dat=%3Cacs_cross%3Ea247618323%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |