Microwave Air Plasma Applied to Naphthalene Thermal Conversion

In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2016-02, Vol.30 (2), p.1510-1516, Article acs.energyfuels.5b02451
Hauptverfasser: Medeiros, H. S, Pilatau, A, Nozhenko, O. S, da Silva Sobrinho, A. S, Petraconi Filho, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 2
container_start_page 1510
container_title Energy & fuels
container_volume 30
creator Medeiros, H. S
Pilatau, A
Nozhenko, O. S
da Silva Sobrinho, A. S
Petraconi Filho, G
description In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.
doi_str_mv 10.1021/acs.energyfuels.5b02451
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_5b02451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a247618323</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqHwDfgHUsZ2Hs4GqYqAIpXHoqyjsTOmqdIkstui_j2p2gU7Vndzz8zVYexewFSAFA9ow5Q68t8Ht6M2TFMDMknFBYtEKiFOQRaXLAKt8xgymVyzmxDWAJApnUbs8a2xvv_BPfFZ4_lni2GDfDYMbUM13_b8HYfVdoXt-IIvV-Q32PKy7_bkQ9N3t-zKYRvo7pwT9vX8tCzn8eLj5bWcLWJUSm9j1HmRGKsKYQrldCIJsiRzzhpZq9xopzMiFFBYaVIjUWpjNCpX10ZYm5GasPx0dxwbgidXDb7ZoD9UAqqjhmrUUP3RUJ01jKQ6kcfCut_5btz5L_ULrcloyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</title><source>ACS Publications</source><creator>Medeiros, H. S ; Pilatau, A ; Nozhenko, O. S ; da Silva Sobrinho, A. S ; Petraconi Filho, G</creator><creatorcontrib>Medeiros, H. S ; Pilatau, A ; Nozhenko, O. S ; da Silva Sobrinho, A. S ; Petraconi Filho, G</creatorcontrib><description>In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.5b02451</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2016-02, Vol.30 (2), p.1510-1516, Article acs.energyfuels.5b02451</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</citedby><cites>FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.5b02451$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.5b02451$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Medeiros, H. S</creatorcontrib><creatorcontrib>Pilatau, A</creatorcontrib><creatorcontrib>Nozhenko, O. S</creatorcontrib><creatorcontrib>da Silva Sobrinho, A. S</creatorcontrib><creatorcontrib>Petraconi Filho, G</creatorcontrib><title>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqHwDfgHUsZ2Hs4GqYqAIpXHoqyjsTOmqdIkstui_j2p2gU7Vndzz8zVYexewFSAFA9ow5Q68t8Ht6M2TFMDMknFBYtEKiFOQRaXLAKt8xgymVyzmxDWAJApnUbs8a2xvv_BPfFZ4_lni2GDfDYMbUM13_b8HYfVdoXt-IIvV-Q32PKy7_bkQ9N3t-zKYRvo7pwT9vX8tCzn8eLj5bWcLWJUSm9j1HmRGKsKYQrldCIJsiRzzhpZq9xopzMiFFBYaVIjUWpjNCpX10ZYm5GasPx0dxwbgidXDb7ZoD9UAqqjhmrUUP3RUJ01jKQ6kcfCut_5btz5L_ULrcloyw</recordid><startdate>20160218</startdate><enddate>20160218</enddate><creator>Medeiros, H. S</creator><creator>Pilatau, A</creator><creator>Nozhenko, O. S</creator><creator>da Silva Sobrinho, A. S</creator><creator>Petraconi Filho, G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160218</creationdate><title>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</title><author>Medeiros, H. S ; Pilatau, A ; Nozhenko, O. S ; da Silva Sobrinho, A. S ; Petraconi Filho, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-a8794bc391b93f842e0646ffcb2d37b8f86eea109c2b5b2a28bb8a3fddb1cc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medeiros, H. S</creatorcontrib><creatorcontrib>Pilatau, A</creatorcontrib><creatorcontrib>Nozhenko, O. S</creatorcontrib><creatorcontrib>da Silva Sobrinho, A. S</creatorcontrib><creatorcontrib>Petraconi Filho, G</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medeiros, H. S</au><au>Pilatau, A</au><au>Nozhenko, O. S</au><au>da Silva Sobrinho, A. S</au><au>Petraconi Filho, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Air Plasma Applied to Naphthalene Thermal Conversion</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2016-02-18</date><risdate>2016</risdate><volume>30</volume><issue>2</issue><spage>1510</spage><epage>1516</epage><pages>1510-1516</pages><artnum>acs.energyfuels.5b02451</artnum><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>In this paper, a naphthalene (C10H8) thermal cracking model is presented. The model is based on a simple model that takes into account the microwave (MW) plasma thermal influence on naphthalene cracking, accompanying its steam reforming reactions. The temperature level of 1573 K was established for complete C10H8 cracking at 1.75 kW plasma power. High conversion efficiency of C10H8 is achieved varying the air flow rate in the range of 0.6–1.2 m3/h. The model approximates the characteristics of the considered MW plasma to thermal plasma in local thermodynamic equilibrium (LTE). Experimental data have good agreement with calculated data at the cited region of the air flow rate and power. Conversion efficiency up to 99.36% was obtained.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.5b02451</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2016-02, Vol.30 (2), p.1510-1516, Article acs.energyfuels.5b02451
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_5b02451
source ACS Publications
title Microwave Air Plasma Applied to Naphthalene Thermal Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Air%20Plasma%20Applied%20to%20Naphthalene%20Thermal%20Conversion&rft.jtitle=Energy%20&%20fuels&rft.au=Medeiros,%20H.%20S&rft.date=2016-02-18&rft.volume=30&rft.issue=2&rft.spage=1510&rft.epage=1516&rft.pages=1510-1516&rft.artnum=acs.energyfuels.5b02451&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.5b02451&rft_dat=%3Cacs_cross%3Ea247618323%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true