Numerical Simulation Analysis on Production Evolution Laws in Shale Reservoirs Considering a Horizontal Well Interwell Interference Effect

This study introduces a sophisticated fluid–solid coupling production model specifically for shale gas reservoirs. It comprehensively considers the heterogeneity of the formations and integrates a range of microflow behaviors observed in shale gas, as well as the effects of stress sensitivity. Subse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-03, Vol.38 (5), p.4076-4090
Hauptverfasser: Liang, Yanbo, Cheng, Yuanfang, Han, Zhongying, Yan, Chuanliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4090
container_issue 5
container_start_page 4076
container_title Energy & fuels
container_volume 38
creator Liang, Yanbo
Cheng, Yuanfang
Han, Zhongying
Yan, Chuanliang
description This study introduces a sophisticated fluid–solid coupling production model specifically for shale gas reservoirs. It comprehensively considers the heterogeneity of the formations and integrates a range of microflow behaviors observed in shale gas, as well as the effects of stress sensitivity. Subsequently, the research explores the dynamic production evolution patterns of parent and child wells under various forms of interference and at different infill times. Simulation results reveal that artificial fracture interference can decrease parent well production compared to the scenario without a child well. The production of the parent well is found to be directly proportional to the connection number and embedding depth of artificial fractures and inversely proportional to the offset distance. The child well production shows minor variations after artificial fracture interference. The connection of the interwell fracture network has a positive effect on the production of the parent well in the initial stage of interference, and the production of the parent well is directly proportional to the interwell fracture network permeability. The interference magnitude among different forms is ranked as interwell fracture network communication > artificial fracture connection > artificial fracture embedding. Early production in child wells negatively interferes with parent wells, whereas later commencement positively influences them. Therefore, optimizing the infill time of the child well and considering interwell connectivity are crucial to minimize negative interference on parent wells and ensure comprehensive reservoir utilization.
doi_str_mv 10.1021/acs.energyfuels.3c04951
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_3c04951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b074230709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-c091cec410d36e8aa2857d1ce55316bf97c4d12f427a0ef8f739914da0e757b63</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqVwBnyBFDuJ42RZVYVWqgBREMvIdZ6LK9dGdtKqHIFT4_4IsWP15o1mZvEhdEvJgJKU3gkZBmDBL3eqAxMGmSR5xegZ6lGWkoSRtDpHPVKWPCFFml-iqxBWhJAiK1kPfT92a_BaCoPnet0Z0Wpn8dAKsws64KifvWs6ebDHG2e6g5qJbcDa4vmHMIBfIIDfOO0DHjkbdBMX7RILPHFefznbxvV3MAZPbQt--6sUeLAS8FgpkO01ulDCBLg53T56ux-_jibJ7OlhOhrOEpHmvE0kqagEmVPSZAWUQqQl4020GMtosVAVl3lDU5WnXBBQpeJZVdG8iQ9nfFFkfcSPu9K7EDyo-tPrtfC7mpJ6j7SOSOs_SOsT0tjMjs19YOU6HzGFf1s_CkeE2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Simulation Analysis on Production Evolution Laws in Shale Reservoirs Considering a Horizontal Well Interwell Interference Effect</title><source>ACS Publications</source><creator>Liang, Yanbo ; Cheng, Yuanfang ; Han, Zhongying ; Yan, Chuanliang</creator><creatorcontrib>Liang, Yanbo ; Cheng, Yuanfang ; Han, Zhongying ; Yan, Chuanliang</creatorcontrib><description>This study introduces a sophisticated fluid–solid coupling production model specifically for shale gas reservoirs. It comprehensively considers the heterogeneity of the formations and integrates a range of microflow behaviors observed in shale gas, as well as the effects of stress sensitivity. Subsequently, the research explores the dynamic production evolution patterns of parent and child wells under various forms of interference and at different infill times. Simulation results reveal that artificial fracture interference can decrease parent well production compared to the scenario without a child well. The production of the parent well is found to be directly proportional to the connection number and embedding depth of artificial fractures and inversely proportional to the offset distance. The child well production shows minor variations after artificial fracture interference. The connection of the interwell fracture network has a positive effect on the production of the parent well in the initial stage of interference, and the production of the parent well is directly proportional to the interwell fracture network permeability. The interference magnitude among different forms is ranked as interwell fracture network communication &gt; artificial fracture connection &gt; artificial fracture embedding. Early production in child wells negatively interferes with parent wells, whereas later commencement positively influences them. Therefore, optimizing the infill time of the child well and considering interwell connectivity are crucial to minimize negative interference on parent wells and ensure comprehensive reservoir utilization.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.3c04951</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Unconventional Energy Resources</subject><ispartof>Energy &amp; fuels, 2024-03, Vol.38 (5), p.4076-4090</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-c091cec410d36e8aa2857d1ce55316bf97c4d12f427a0ef8f739914da0e757b63</cites><orcidid>0000-0002-0034-3578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.3c04951$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.3c04951$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Liang, Yanbo</creatorcontrib><creatorcontrib>Cheng, Yuanfang</creatorcontrib><creatorcontrib>Han, Zhongying</creatorcontrib><creatorcontrib>Yan, Chuanliang</creatorcontrib><title>Numerical Simulation Analysis on Production Evolution Laws in Shale Reservoirs Considering a Horizontal Well Interwell Interference Effect</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>This study introduces a sophisticated fluid–solid coupling production model specifically for shale gas reservoirs. It comprehensively considers the heterogeneity of the formations and integrates a range of microflow behaviors observed in shale gas, as well as the effects of stress sensitivity. Subsequently, the research explores the dynamic production evolution patterns of parent and child wells under various forms of interference and at different infill times. Simulation results reveal that artificial fracture interference can decrease parent well production compared to the scenario without a child well. The production of the parent well is found to be directly proportional to the connection number and embedding depth of artificial fractures and inversely proportional to the offset distance. The child well production shows minor variations after artificial fracture interference. The connection of the interwell fracture network has a positive effect on the production of the parent well in the initial stage of interference, and the production of the parent well is directly proportional to the interwell fracture network permeability. The interference magnitude among different forms is ranked as interwell fracture network communication &gt; artificial fracture connection &gt; artificial fracture embedding. Early production in child wells negatively interferes with parent wells, whereas later commencement positively influences them. Therefore, optimizing the infill time of the child well and considering interwell connectivity are crucial to minimize negative interference on parent wells and ensure comprehensive reservoir utilization.</description><subject>Unconventional Energy Resources</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhC0EEqVwBnyBFDuJ42RZVYVWqgBREMvIdZ6LK9dGdtKqHIFT4_4IsWP15o1mZvEhdEvJgJKU3gkZBmDBL3eqAxMGmSR5xegZ6lGWkoSRtDpHPVKWPCFFml-iqxBWhJAiK1kPfT92a_BaCoPnet0Z0Wpn8dAKsws64KifvWs6ebDHG2e6g5qJbcDa4vmHMIBfIIDfOO0DHjkbdBMX7RILPHFefznbxvV3MAZPbQt--6sUeLAS8FgpkO01ulDCBLg53T56ux-_jibJ7OlhOhrOEpHmvE0kqagEmVPSZAWUQqQl4020GMtosVAVl3lDU5WnXBBQpeJZVdG8iQ9nfFFkfcSPu9K7EDyo-tPrtfC7mpJ6j7SOSOs_SOsT0tjMjs19YOU6HzGFf1s_CkeE2A</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Liang, Yanbo</creator><creator>Cheng, Yuanfang</creator><creator>Han, Zhongying</creator><creator>Yan, Chuanliang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0034-3578</orcidid></search><sort><creationdate>20240307</creationdate><title>Numerical Simulation Analysis on Production Evolution Laws in Shale Reservoirs Considering a Horizontal Well Interwell Interference Effect</title><author>Liang, Yanbo ; Cheng, Yuanfang ; Han, Zhongying ; Yan, Chuanliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-c091cec410d36e8aa2857d1ce55316bf97c4d12f427a0ef8f739914da0e757b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Unconventional Energy Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yanbo</creatorcontrib><creatorcontrib>Cheng, Yuanfang</creatorcontrib><creatorcontrib>Han, Zhongying</creatorcontrib><creatorcontrib>Yan, Chuanliang</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yanbo</au><au>Cheng, Yuanfang</au><au>Han, Zhongying</au><au>Yan, Chuanliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation Analysis on Production Evolution Laws in Shale Reservoirs Considering a Horizontal Well Interwell Interference Effect</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>38</volume><issue>5</issue><spage>4076</spage><epage>4090</epage><pages>4076-4090</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>This study introduces a sophisticated fluid–solid coupling production model specifically for shale gas reservoirs. It comprehensively considers the heterogeneity of the formations and integrates a range of microflow behaviors observed in shale gas, as well as the effects of stress sensitivity. Subsequently, the research explores the dynamic production evolution patterns of parent and child wells under various forms of interference and at different infill times. Simulation results reveal that artificial fracture interference can decrease parent well production compared to the scenario without a child well. The production of the parent well is found to be directly proportional to the connection number and embedding depth of artificial fractures and inversely proportional to the offset distance. The child well production shows minor variations after artificial fracture interference. The connection of the interwell fracture network has a positive effect on the production of the parent well in the initial stage of interference, and the production of the parent well is directly proportional to the interwell fracture network permeability. The interference magnitude among different forms is ranked as interwell fracture network communication &gt; artificial fracture connection &gt; artificial fracture embedding. Early production in child wells negatively interferes with parent wells, whereas later commencement positively influences them. Therefore, optimizing the infill time of the child well and considering interwell connectivity are crucial to minimize negative interference on parent wells and ensure comprehensive reservoir utilization.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.3c04951</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0034-3578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2024-03, Vol.38 (5), p.4076-4090
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_3c04951
source ACS Publications
subjects Unconventional Energy Resources
title Numerical Simulation Analysis on Production Evolution Laws in Shale Reservoirs Considering a Horizontal Well Interwell Interference Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20Analysis%20on%20Production%20Evolution%20Laws%20in%20Shale%20Reservoirs%20Considering%20a%20Horizontal%20Well%20Interwell%20Interference%20Effect&rft.jtitle=Energy%20&%20fuels&rft.au=Liang,%20Yanbo&rft.date=2024-03-07&rft.volume=38&rft.issue=5&rft.spage=4076&rft.epage=4090&rft.pages=4076-4090&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.3c04951&rft_dat=%3Cacs_cross%3Eb074230709%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true