Screening of Natural Oxygen Carriers for Chemical Looping Combustion Based on a Machine Learning Method

The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of being high cost and having long material design cycles. Here, a machine learning model has been established which successfully predic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2023-03, Vol.37 (5), p.3926-3933
Hauptverfasser: Song, Yiwen, Lu, Yingjie, Wang, Mengmeng, Liu, Tong, Wang, Chen, Xiao, Rui, Zeng, Dewang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3933
container_issue 5
container_start_page 3926
container_title Energy & fuels
container_volume 37
creator Song, Yiwen
Lu, Yingjie
Wang, Mengmeng
Liu, Tong
Wang, Chen
Xiao, Rui
Zeng, Dewang
description The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of being high cost and having long material design cycles. Here, a machine learning model has been established which successfully predicted the effect of composition, porosity, specific surface area, and other physicochemical properties on the redox performance. A database consisting of 190 samples was used to train the BP-ANN algorithm and the SVM algorithm. The SVM algorithm triumphs over the BP-ANN algorithm in that the best model by the SVM algorithm makes predictions with a high coefficient of determination (R 2 = 0.961) and a low root mean square error (RMSE = 0.014). According to the obtained model, the copper ore was estimated to exhibit high reaction performance in terms of 68% CH4 conversion and 96% CO conversion at 950 °C. We anticipate the machine learning method can be extended to predict the performance of oxygen carriers for other chemical looping applications.
doi_str_mv 10.1021/acs.energyfuels.2c04214
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_2c04214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b979206050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-d8aeb35a3e709f6de6a2e7ee297b3af3faa651dc7ab941e05de0deb9f3220093</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDfgHUsZ2nkuIeEkpXdB9NLHHaao2ruxEon9PCl2wYzUjzT1Xo8PYvYCFACkeUIcF9eTbox1pFxZSQyxFfMFmIpEQJSCLSzaDPM8iSGV8zW5C2AJAqvJkxtpP7Yn6rm-5s_wDh9Hjjq--ji31vETvO_KBW-d5uaF9p6dj5dzhlC_dvhnD0LmeP2Egw6cF-RL1puuJV4T-p3ZJw8aZW3ZlcRfo7jznbP3yvC7fomr1-l4-VhEqEENkcqRGJagog8KmhlKUlBHJImsUWmUR00QYnWFTxIIgMQSGmsIqKQEKNWfZb632LgRPtj74bo_-WAuoT7rqSVf9R1d91jWR6pc8BbZu9P305r_UNzm6dxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Screening of Natural Oxygen Carriers for Chemical Looping Combustion Based on a Machine Learning Method</title><source>ACS Publications</source><creator>Song, Yiwen ; Lu, Yingjie ; Wang, Mengmeng ; Liu, Tong ; Wang, Chen ; Xiao, Rui ; Zeng, Dewang</creator><creatorcontrib>Song, Yiwen ; Lu, Yingjie ; Wang, Mengmeng ; Liu, Tong ; Wang, Chen ; Xiao, Rui ; Zeng, Dewang</creatorcontrib><description>The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of being high cost and having long material design cycles. Here, a machine learning model has been established which successfully predicted the effect of composition, porosity, specific surface area, and other physicochemical properties on the redox performance. A database consisting of 190 samples was used to train the BP-ANN algorithm and the SVM algorithm. The SVM algorithm triumphs over the BP-ANN algorithm in that the best model by the SVM algorithm makes predictions with a high coefficient of determination (R 2 = 0.961) and a low root mean square error (RMSE = 0.014). According to the obtained model, the copper ore was estimated to exhibit high reaction performance in terms of 68% CH4 conversion and 96% CO conversion at 950 °C. We anticipate the machine learning method can be extended to predict the performance of oxygen carriers for other chemical looping applications.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.2c04214</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Combustion</subject><ispartof>Energy &amp; fuels, 2023-03, Vol.37 (5), p.3926-3933</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-d8aeb35a3e709f6de6a2e7ee297b3af3faa651dc7ab941e05de0deb9f3220093</citedby><cites>FETCH-LOGICAL-a301t-d8aeb35a3e709f6de6a2e7ee297b3af3faa651dc7ab941e05de0deb9f3220093</cites><orcidid>0000-0001-8080-8859 ; 0000-0002-4410-0332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.2c04214$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04214$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Song, Yiwen</creatorcontrib><creatorcontrib>Lu, Yingjie</creatorcontrib><creatorcontrib>Wang, Mengmeng</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zeng, Dewang</creatorcontrib><title>Screening of Natural Oxygen Carriers for Chemical Looping Combustion Based on a Machine Learning Method</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of being high cost and having long material design cycles. Here, a machine learning model has been established which successfully predicted the effect of composition, porosity, specific surface area, and other physicochemical properties on the redox performance. A database consisting of 190 samples was used to train the BP-ANN algorithm and the SVM algorithm. The SVM algorithm triumphs over the BP-ANN algorithm in that the best model by the SVM algorithm makes predictions with a high coefficient of determination (R 2 = 0.961) and a low root mean square error (RMSE = 0.014). According to the obtained model, the copper ore was estimated to exhibit high reaction performance in terms of 68% CH4 conversion and 96% CO conversion at 950 °C. We anticipate the machine learning method can be extended to predict the performance of oxygen carriers for other chemical looping applications.</description><subject>Combustion</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDfgHUsZ2nkuIeEkpXdB9NLHHaao2ruxEon9PCl2wYzUjzT1Xo8PYvYCFACkeUIcF9eTbox1pFxZSQyxFfMFmIpEQJSCLSzaDPM8iSGV8zW5C2AJAqvJkxtpP7Yn6rm-5s_wDh9Hjjq--ji31vETvO_KBW-d5uaF9p6dj5dzhlC_dvhnD0LmeP2Egw6cF-RL1puuJV4T-p3ZJw8aZW3ZlcRfo7jznbP3yvC7fomr1-l4-VhEqEENkcqRGJagog8KmhlKUlBHJImsUWmUR00QYnWFTxIIgMQSGmsIqKQEKNWfZb632LgRPtj74bo_-WAuoT7rqSVf9R1d91jWR6pc8BbZu9P305r_UNzm6dxk</recordid><startdate>20230302</startdate><enddate>20230302</enddate><creator>Song, Yiwen</creator><creator>Lu, Yingjie</creator><creator>Wang, Mengmeng</creator><creator>Liu, Tong</creator><creator>Wang, Chen</creator><creator>Xiao, Rui</creator><creator>Zeng, Dewang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8080-8859</orcidid><orcidid>https://orcid.org/0000-0002-4410-0332</orcidid></search><sort><creationdate>20230302</creationdate><title>Screening of Natural Oxygen Carriers for Chemical Looping Combustion Based on a Machine Learning Method</title><author>Song, Yiwen ; Lu, Yingjie ; Wang, Mengmeng ; Liu, Tong ; Wang, Chen ; Xiao, Rui ; Zeng, Dewang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-d8aeb35a3e709f6de6a2e7ee297b3af3faa651dc7ab941e05de0deb9f3220093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yiwen</creatorcontrib><creatorcontrib>Lu, Yingjie</creatorcontrib><creatorcontrib>Wang, Mengmeng</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zeng, Dewang</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yiwen</au><au>Lu, Yingjie</au><au>Wang, Mengmeng</au><au>Liu, Tong</au><au>Wang, Chen</au><au>Xiao, Rui</au><au>Zeng, Dewang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening of Natural Oxygen Carriers for Chemical Looping Combustion Based on a Machine Learning Method</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2023-03-02</date><risdate>2023</risdate><volume>37</volume><issue>5</issue><spage>3926</spage><epage>3933</epage><pages>3926-3933</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of being high cost and having long material design cycles. Here, a machine learning model has been established which successfully predicted the effect of composition, porosity, specific surface area, and other physicochemical properties on the redox performance. A database consisting of 190 samples was used to train the BP-ANN algorithm and the SVM algorithm. The SVM algorithm triumphs over the BP-ANN algorithm in that the best model by the SVM algorithm makes predictions with a high coefficient of determination (R 2 = 0.961) and a low root mean square error (RMSE = 0.014). According to the obtained model, the copper ore was estimated to exhibit high reaction performance in terms of 68% CH4 conversion and 96% CO conversion at 950 °C. We anticipate the machine learning method can be extended to predict the performance of oxygen carriers for other chemical looping applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.2c04214</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8080-8859</orcidid><orcidid>https://orcid.org/0000-0002-4410-0332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2023-03, Vol.37 (5), p.3926-3933
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_2c04214
source ACS Publications
subjects Combustion
title Screening of Natural Oxygen Carriers for Chemical Looping Combustion Based on a Machine Learning Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20of%20Natural%20Oxygen%20Carriers%20for%20Chemical%20Looping%20Combustion%20Based%20on%20a%20Machine%20Learning%20Method&rft.jtitle=Energy%20&%20fuels&rft.au=Song,%20Yiwen&rft.date=2023-03-02&rft.volume=37&rft.issue=5&rft.spage=3926&rft.epage=3933&rft.pages=3926-3933&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.2c04214&rft_dat=%3Cacs_cross%3Eb979206050%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true