Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries
In this report, we have prepared the imidazolium-based ionic liquid-incorporated interpenetrating polymer network (IPN) electrolyte membrane containing cellulose triacetate with polyethylene glycol dimethyl acrylate and polyethylene oxide by the UV-induced polymerization method. A facile IPN electro...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2022-05, Vol.36 (9), p.4999-5008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5008 |
---|---|
container_issue | 9 |
container_start_page | 4999 |
container_title | Energy & fuels |
container_volume | 36 |
creator | More, Sahebrao S Khupse, Nageshwar D Ambekar, Jalindar D Kulkarni, Milind V Kale, Bharat B |
description | In this report, we have prepared the imidazolium-based ionic liquid-incorporated interpenetrating polymer network (IPN) electrolyte membrane containing cellulose triacetate with polyethylene glycol dimethyl acrylate and polyethylene oxide by the UV-induced polymerization method. A facile IPN electrolyte membrane appears to be homogeneous in nature with high mechanical strength, excellent thermal stability, and exhibits optimum ionic conductivity of the order of 2.84 × 10–3 S cm–1. The oxidative stability of the IPN electrolyte membrane is observed up to 5.2 V at room temperature, which is attributed to immobilized ion networks provided by the imidazolium ionic liquid. The IPN electrolyte membrane is galvanostatically cycled having battery configuration Li/IPN EM/LiFePO4, which shows the first discharge capacity of 110 mA h g–1 at 0.05 C with 93.65% Coulombic efficiency at room temperature. The cell shows discharge capacities of about 85, 82, and 76 mA h g–1 at 0.1, 0.2, and 1 C rates, respectively. The ionic liquid-incorporated IPN electrolyte membrane provides a promising system for stabilizing lithium electrodeposition and fabricating high-performance lithium-ion batteries. Finally, IPN electrolyte membranes could be a potential electrolytes for next-generation high-power and safer solid-state battery technology. |
doi_str_mv | 10.1021/acs.energyfuels.2c00551 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_2c00551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a683778852</sourcerecordid><originalsourceid>FETCH-LOGICAL-a216t-b8bb563c558b6bebb17c87349cad1986882f51a31023c3447bc25326ba9f2c703</originalsourceid><addsrcrecordid>eNqFkEtOwzAURS0EEqWwBryBFH_ixBlC1UKlCpAK48h2nOLixMF2BN09rtoBM0Zvcu_RfQeAW4xmGBF8J1SY6V777b4dtQ0zohBiDJ-BCWYEZQyR6hxMEOdlhgqSX4KrEHYIoYJyNgHdyvVGwbX5Gk2TbcZhcD7qBq76qP2QuNGLaPotfHV232kPn3X8dv4TLq3-MdJquHHWNHBhtYo-ZaIOsHU-EeOHGbss8eGDiIlmdLgGF62wQd-c7hS8Lxdv86ds_fK4mt-vM0FwETPJpWQFVYxxWUgtJS4VL2leKdHgiheck5ZhQdP_VNE8L6UijJJCiqolqkR0CsojV3kXgtdtPXjTCb-vMaoP1upkrf5jrT5ZS016bB4COzf6Pu38t_ULnf15oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries</title><source>ACS Publications</source><creator>More, Sahebrao S ; Khupse, Nageshwar D ; Ambekar, Jalindar D ; Kulkarni, Milind V ; Kale, Bharat B</creator><creatorcontrib>More, Sahebrao S ; Khupse, Nageshwar D ; Ambekar, Jalindar D ; Kulkarni, Milind V ; Kale, Bharat B</creatorcontrib><description>In this report, we have prepared the imidazolium-based ionic liquid-incorporated interpenetrating polymer network (IPN) electrolyte membrane containing cellulose triacetate with polyethylene glycol dimethyl acrylate and polyethylene oxide by the UV-induced polymerization method. A facile IPN electrolyte membrane appears to be homogeneous in nature with high mechanical strength, excellent thermal stability, and exhibits optimum ionic conductivity of the order of 2.84 × 10–3 S cm–1. The oxidative stability of the IPN electrolyte membrane is observed up to 5.2 V at room temperature, which is attributed to immobilized ion networks provided by the imidazolium ionic liquid. The IPN electrolyte membrane is galvanostatically cycled having battery configuration Li/IPN EM/LiFePO4, which shows the first discharge capacity of 110 mA h g–1 at 0.05 C with 93.65% Coulombic efficiency at room temperature. The cell shows discharge capacities of about 85, 82, and 76 mA h g–1 at 0.1, 0.2, and 1 C rates, respectively. The ionic liquid-incorporated IPN electrolyte membrane provides a promising system for stabilizing lithium electrodeposition and fabricating high-performance lithium-ion batteries. Finally, IPN electrolyte membranes could be a potential electrolytes for next-generation high-power and safer solid-state battery technology.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.2c00551</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Batteries and Energy Storage</subject><ispartof>Energy & fuels, 2022-05, Vol.36 (9), p.4999-5008</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a216t-b8bb563c558b6bebb17c87349cad1986882f51a31023c3447bc25326ba9f2c703</citedby><cites>FETCH-LOGICAL-a216t-b8bb563c558b6bebb17c87349cad1986882f51a31023c3447bc25326ba9f2c703</cites><orcidid>0000-0003-4871-9316 ; 0000-0002-3211-717X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.2c00551$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00551$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>More, Sahebrao S</creatorcontrib><creatorcontrib>Khupse, Nageshwar D</creatorcontrib><creatorcontrib>Ambekar, Jalindar D</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><title>Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>In this report, we have prepared the imidazolium-based ionic liquid-incorporated interpenetrating polymer network (IPN) electrolyte membrane containing cellulose triacetate with polyethylene glycol dimethyl acrylate and polyethylene oxide by the UV-induced polymerization method. A facile IPN electrolyte membrane appears to be homogeneous in nature with high mechanical strength, excellent thermal stability, and exhibits optimum ionic conductivity of the order of 2.84 × 10–3 S cm–1. The oxidative stability of the IPN electrolyte membrane is observed up to 5.2 V at room temperature, which is attributed to immobilized ion networks provided by the imidazolium ionic liquid. The IPN electrolyte membrane is galvanostatically cycled having battery configuration Li/IPN EM/LiFePO4, which shows the first discharge capacity of 110 mA h g–1 at 0.05 C with 93.65% Coulombic efficiency at room temperature. The cell shows discharge capacities of about 85, 82, and 76 mA h g–1 at 0.1, 0.2, and 1 C rates, respectively. The ionic liquid-incorporated IPN electrolyte membrane provides a promising system for stabilizing lithium electrodeposition and fabricating high-performance lithium-ion batteries. Finally, IPN electrolyte membranes could be a potential electrolytes for next-generation high-power and safer solid-state battery technology.</description><subject>Batteries and Energy Storage</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAURS0EEqWwBryBFH_ixBlC1UKlCpAK48h2nOLixMF2BN09rtoBM0Zvcu_RfQeAW4xmGBF8J1SY6V777b4dtQ0zohBiDJ-BCWYEZQyR6hxMEOdlhgqSX4KrEHYIoYJyNgHdyvVGwbX5Gk2TbcZhcD7qBq76qP2QuNGLaPotfHV232kPn3X8dv4TLq3-MdJquHHWNHBhtYo-ZaIOsHU-EeOHGbss8eGDiIlmdLgGF62wQd-c7hS8Lxdv86ds_fK4mt-vM0FwETPJpWQFVYxxWUgtJS4VL2leKdHgiheck5ZhQdP_VNE8L6UijJJCiqolqkR0CsojV3kXgtdtPXjTCb-vMaoP1upkrf5jrT5ZS016bB4COzf6Pu38t_ULnf15oQ</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>More, Sahebrao S</creator><creator>Khupse, Nageshwar D</creator><creator>Ambekar, Jalindar D</creator><creator>Kulkarni, Milind V</creator><creator>Kale, Bharat B</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4871-9316</orcidid><orcidid>https://orcid.org/0000-0002-3211-717X</orcidid></search><sort><creationdate>20220505</creationdate><title>Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries</title><author>More, Sahebrao S ; Khupse, Nageshwar D ; Ambekar, Jalindar D ; Kulkarni, Milind V ; Kale, Bharat B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a216t-b8bb563c558b6bebb17c87349cad1986882f51a31023c3447bc25326ba9f2c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries and Energy Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>More, Sahebrao S</creatorcontrib><creatorcontrib>Khupse, Nageshwar D</creatorcontrib><creatorcontrib>Ambekar, Jalindar D</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><collection>CrossRef</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>More, Sahebrao S</au><au>Khupse, Nageshwar D</au><au>Ambekar, Jalindar D</au><au>Kulkarni, Milind V</au><au>Kale, Bharat B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2022-05-05</date><risdate>2022</risdate><volume>36</volume><issue>9</issue><spage>4999</spage><epage>5008</epage><pages>4999-5008</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>In this report, we have prepared the imidazolium-based ionic liquid-incorporated interpenetrating polymer network (IPN) electrolyte membrane containing cellulose triacetate with polyethylene glycol dimethyl acrylate and polyethylene oxide by the UV-induced polymerization method. A facile IPN electrolyte membrane appears to be homogeneous in nature with high mechanical strength, excellent thermal stability, and exhibits optimum ionic conductivity of the order of 2.84 × 10–3 S cm–1. The oxidative stability of the IPN electrolyte membrane is observed up to 5.2 V at room temperature, which is attributed to immobilized ion networks provided by the imidazolium ionic liquid. The IPN electrolyte membrane is galvanostatically cycled having battery configuration Li/IPN EM/LiFePO4, which shows the first discharge capacity of 110 mA h g–1 at 0.05 C with 93.65% Coulombic efficiency at room temperature. The cell shows discharge capacities of about 85, 82, and 76 mA h g–1 at 0.1, 0.2, and 1 C rates, respectively. The ionic liquid-incorporated IPN electrolyte membrane provides a promising system for stabilizing lithium electrodeposition and fabricating high-performance lithium-ion batteries. Finally, IPN electrolyte membranes could be a potential electrolytes for next-generation high-power and safer solid-state battery technology.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.2c00551</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4871-9316</orcidid><orcidid>https://orcid.org/0000-0002-3211-717X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2022-05, Vol.36 (9), p.4999-5008 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_energyfuels_2c00551 |
source | ACS Publications |
subjects | Batteries and Energy Storage |
title | Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20Liquid-Supported%20Interpenetrating%20Polymer%20Network%20Flexible%20Solid%20Electrolytes%20for%20Lithium-Ion%20Batteries&rft.jtitle=Energy%20&%20fuels&rft.au=More,%20Sahebrao%20S&rft.date=2022-05-05&rft.volume=36&rft.issue=9&rft.spage=4999&rft.epage=5008&rft.pages=4999-5008&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.2c00551&rft_dat=%3Cacs_cross%3Ea683778852%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |