Electrostatic Characterization of the −COOH–Brine–Clay System: Implications for Wettability Alteration during Low Salinity Waterflooding in Sandstone Reservoirs

Wettability alteration is a critical physiochemical effect for enhanced oil recovery during low salinity waterflooding in sandstone reservoirs. While electrostatic adsorption of polar groups on clay basal planes and edges has been perceived to govern the wettability alteration, the relative contribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2021-10, Vol.35 (20), p.16599-16606
Hauptverfasser: Chen, Yongqiang, Niasar, Vahid J, Xie, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16606
container_issue 20
container_start_page 16599
container_title Energy & fuels
container_volume 35
creator Chen, Yongqiang
Niasar, Vahid J
Xie, Quan
description Wettability alteration is a critical physiochemical effect for enhanced oil recovery during low salinity waterflooding in sandstone reservoirs. While electrostatic adsorption of polar groups on clay basal planes and edges has been perceived to govern the wettability alteration, the relative contribution of adsorption on basal plane and edges to wettability alteration has not been elucidated, which hinders the prediction of low salinity effects. We therefore coupled PHREEQC and PEST to quantify the acid component (−COOH) adhesion on the kaolinite surface against adsorption tests of 4-tert-butyl benzoic acid (PTBBA) on kaolinite powder. The −COOCa+ and −COO– adsorption on kaolinite basal planes and edges was calibrated against the measured PTBBA adsorption at different salinity and pH values. The new calibrated model shows that the PTBBA adsorption mainly occurs on the basal plane. This geochemical modeling corrects the overestimation of electrostatic force from previous geochemical modeling at low pH and provides further insights beyond the quinoline adsorption model from Chen et al. Salinity governs the PTBBA adsorption at pH > 6 (>Na + −COOCa+ = > –COOCa + Na+), while the pH determines the PTBBA adsorption at pH < 6. This work adds new geochemical data sets to the existing geochemical reactions, quantifying the relative contribution between edge- and basal-charged minerals of acid component (−COOH) adhesion and hence the wettability alteration at different pH and salinity values.
doi_str_mv 10.1021/acs.energyfuels.1c02695
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_1c02695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b635750265</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-b701d13166aa86b0dbc22f8c4dfb23c9041ccbaa25f9f3bdfac72b4da451c1c13</originalsourceid><addsrcrecordid>eNqFkDtOAzEQhi0EEiFwBnyBDbb3TQer8JAiReIhytWs1yaOnDWyHdBSUVLDHTgYJ8FLUtChKUajb_6_-BA6pmRCCaMnwN1EdMI-9nIttJtQTlhWpjtoRFNGopSwcheNSFHkEclYso8OnFsSQrK4SEfoa6oF99Y4D15xXC3AAvfCqtdwmw4bif1C4O_3j2o-v_p--zy3qhNhVxp6fNs7L1an-Hr1pBX_TTgsjcUPwntolFa-x2c69G3a2nVIP-KZecG3oFU34AcIWGpj2gGpLpCudd50At8IJ-yzUdYdoj0J2omj7R6j-4vpXXUVzeaX19XZLIKYUB81OaEtjWmWARRZQ9qGMyYLnrSyYTEvSUI5bwBYKksZN60EnrMmaSFJKQ8Tj1G-6eVBibNC1k9WrcD2NSX1oLsOuus_uuut7pCMN8nhYWnWtoOB_pP6ATqIk2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrostatic Characterization of the −COOH–Brine–Clay System: Implications for Wettability Alteration during Low Salinity Waterflooding in Sandstone Reservoirs</title><source>American Chemical Society Journals</source><creator>Chen, Yongqiang ; Niasar, Vahid J ; Xie, Quan</creator><creatorcontrib>Chen, Yongqiang ; Niasar, Vahid J ; Xie, Quan</creatorcontrib><description>Wettability alteration is a critical physiochemical effect for enhanced oil recovery during low salinity waterflooding in sandstone reservoirs. While electrostatic adsorption of polar groups on clay basal planes and edges has been perceived to govern the wettability alteration, the relative contribution of adsorption on basal plane and edges to wettability alteration has not been elucidated, which hinders the prediction of low salinity effects. We therefore coupled PHREEQC and PEST to quantify the acid component (−COOH) adhesion on the kaolinite surface against adsorption tests of 4-tert-butyl benzoic acid (PTBBA) on kaolinite powder. The −COOCa+ and −COO– adsorption on kaolinite basal planes and edges was calibrated against the measured PTBBA adsorption at different salinity and pH values. The new calibrated model shows that the PTBBA adsorption mainly occurs on the basal plane. This geochemical modeling corrects the overestimation of electrostatic force from previous geochemical modeling at low pH and provides further insights beyond the quinoline adsorption model from Chen et al. Salinity governs the PTBBA adsorption at pH &gt; 6 (&gt;Na + −COOCa+ = &gt; –COOCa + Na+), while the pH determines the PTBBA adsorption at pH &lt; 6. This work adds new geochemical data sets to the existing geochemical reactions, quantifying the relative contribution between edge- and basal-charged minerals of acid component (−COOH) adhesion and hence the wettability alteration at different pH and salinity values.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.1c02695</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Fossil Fuels</subject><ispartof>Energy &amp; fuels, 2021-10, Vol.35 (20), p.16599-16606</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-b701d13166aa86b0dbc22f8c4dfb23c9041ccbaa25f9f3bdfac72b4da451c1c13</citedby><cites>FETCH-LOGICAL-a301t-b701d13166aa86b0dbc22f8c4dfb23c9041ccbaa25f9f3bdfac72b4da451c1c13</cites><orcidid>0000-0003-3395-8023 ; 0000-0003-0951-1133 ; 0000-0002-9472-555X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c02695$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c02695$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Yongqiang</creatorcontrib><creatorcontrib>Niasar, Vahid J</creatorcontrib><creatorcontrib>Xie, Quan</creatorcontrib><title>Electrostatic Characterization of the −COOH–Brine–Clay System: Implications for Wettability Alteration during Low Salinity Waterflooding in Sandstone Reservoirs</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Wettability alteration is a critical physiochemical effect for enhanced oil recovery during low salinity waterflooding in sandstone reservoirs. While electrostatic adsorption of polar groups on clay basal planes and edges has been perceived to govern the wettability alteration, the relative contribution of adsorption on basal plane and edges to wettability alteration has not been elucidated, which hinders the prediction of low salinity effects. We therefore coupled PHREEQC and PEST to quantify the acid component (−COOH) adhesion on the kaolinite surface against adsorption tests of 4-tert-butyl benzoic acid (PTBBA) on kaolinite powder. The −COOCa+ and −COO– adsorption on kaolinite basal planes and edges was calibrated against the measured PTBBA adsorption at different salinity and pH values. The new calibrated model shows that the PTBBA adsorption mainly occurs on the basal plane. This geochemical modeling corrects the overestimation of electrostatic force from previous geochemical modeling at low pH and provides further insights beyond the quinoline adsorption model from Chen et al. Salinity governs the PTBBA adsorption at pH &gt; 6 (&gt;Na + −COOCa+ = &gt; –COOCa + Na+), while the pH determines the PTBBA adsorption at pH &lt; 6. This work adds new geochemical data sets to the existing geochemical reactions, quantifying the relative contribution between edge- and basal-charged minerals of acid component (−COOH) adhesion and hence the wettability alteration at different pH and salinity values.</description><subject>Fossil Fuels</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDtOAzEQhi0EEiFwBnyBDbb3TQer8JAiReIhytWs1yaOnDWyHdBSUVLDHTgYJ8FLUtChKUajb_6_-BA6pmRCCaMnwN1EdMI-9nIttJtQTlhWpjtoRFNGopSwcheNSFHkEclYso8OnFsSQrK4SEfoa6oF99Y4D15xXC3AAvfCqtdwmw4bif1C4O_3j2o-v_p--zy3qhNhVxp6fNs7L1an-Hr1pBX_TTgsjcUPwntolFa-x2c69G3a2nVIP-KZecG3oFU34AcIWGpj2gGpLpCudd50At8IJ-yzUdYdoj0J2omj7R6j-4vpXXUVzeaX19XZLIKYUB81OaEtjWmWARRZQ9qGMyYLnrSyYTEvSUI5bwBYKksZN60EnrMmaSFJKQ8Tj1G-6eVBibNC1k9WrcD2NSX1oLsOuus_uuut7pCMN8nhYWnWtoOB_pP6ATqIk2Q</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Chen, Yongqiang</creator><creator>Niasar, Vahid J</creator><creator>Xie, Quan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3395-8023</orcidid><orcidid>https://orcid.org/0000-0003-0951-1133</orcidid><orcidid>https://orcid.org/0000-0002-9472-555X</orcidid></search><sort><creationdate>20211021</creationdate><title>Electrostatic Characterization of the −COOH–Brine–Clay System: Implications for Wettability Alteration during Low Salinity Waterflooding in Sandstone Reservoirs</title><author>Chen, Yongqiang ; Niasar, Vahid J ; Xie, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-b701d13166aa86b0dbc22f8c4dfb23c9041ccbaa25f9f3bdfac72b4da451c1c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fossil Fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yongqiang</creatorcontrib><creatorcontrib>Niasar, Vahid J</creatorcontrib><creatorcontrib>Xie, Quan</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yongqiang</au><au>Niasar, Vahid J</au><au>Xie, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Characterization of the −COOH–Brine–Clay System: Implications for Wettability Alteration during Low Salinity Waterflooding in Sandstone Reservoirs</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2021-10-21</date><risdate>2021</risdate><volume>35</volume><issue>20</issue><spage>16599</spage><epage>16606</epage><pages>16599-16606</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Wettability alteration is a critical physiochemical effect for enhanced oil recovery during low salinity waterflooding in sandstone reservoirs. While electrostatic adsorption of polar groups on clay basal planes and edges has been perceived to govern the wettability alteration, the relative contribution of adsorption on basal plane and edges to wettability alteration has not been elucidated, which hinders the prediction of low salinity effects. We therefore coupled PHREEQC and PEST to quantify the acid component (−COOH) adhesion on the kaolinite surface against adsorption tests of 4-tert-butyl benzoic acid (PTBBA) on kaolinite powder. The −COOCa+ and −COO– adsorption on kaolinite basal planes and edges was calibrated against the measured PTBBA adsorption at different salinity and pH values. The new calibrated model shows that the PTBBA adsorption mainly occurs on the basal plane. This geochemical modeling corrects the overestimation of electrostatic force from previous geochemical modeling at low pH and provides further insights beyond the quinoline adsorption model from Chen et al. Salinity governs the PTBBA adsorption at pH &gt; 6 (&gt;Na + −COOCa+ = &gt; –COOCa + Na+), while the pH determines the PTBBA adsorption at pH &lt; 6. This work adds new geochemical data sets to the existing geochemical reactions, quantifying the relative contribution between edge- and basal-charged minerals of acid component (−COOH) adhesion and hence the wettability alteration at different pH and salinity values.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.1c02695</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3395-8023</orcidid><orcidid>https://orcid.org/0000-0003-0951-1133</orcidid><orcidid>https://orcid.org/0000-0002-9472-555X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2021-10, Vol.35 (20), p.16599-16606
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_1c02695
source American Chemical Society Journals
subjects Fossil Fuels
title Electrostatic Characterization of the −COOH–Brine–Clay System: Implications for Wettability Alteration during Low Salinity Waterflooding in Sandstone Reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Characterization%20of%20the%20%E2%88%92COOH%E2%80%93Brine%E2%80%93Clay%20System:%20Implications%20for%20Wettability%20Alteration%20during%20Low%20Salinity%20Waterflooding%20in%20Sandstone%20Reservoirs&rft.jtitle=Energy%20&%20fuels&rft.au=Chen,%20Yongqiang&rft.date=2021-10-21&rft.volume=35&rft.issue=20&rft.spage=16599&rft.epage=16606&rft.pages=16599-16606&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.1c02695&rft_dat=%3Cacs_cross%3Eb635750265%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true