Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams

Three-dimensional (3D) deterministic design of electrodes could enable simultaneous high energy and power density for electrochemical energy storage devices. The goal of such electrode architectures is to provide adequate charge (electron and ion) transport pathways for high power, while maintaining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2021-10, Vol.35 (19), p.16183-16193
Hauptverfasser: Spencer, Michael A, Yildiz, Ozkan, Kamboj, Ishita, Bradford, Philip D, Augustyn, Veronica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16193
container_issue 19
container_start_page 16183
container_title Energy & fuels
container_volume 35
creator Spencer, Michael A
Yildiz, Ozkan
Kamboj, Ishita
Bradford, Philip D
Augustyn, Veronica
description Three-dimensional (3D) deterministic design of electrodes could enable simultaneous high energy and power density for electrochemical energy storage devices. The goal of such electrode architectures is to provide adequate charge (electron and ion) transport pathways for high power, while maintaining high active material loading (>10 mg cm–2) for high areal and volumetric capacities. However, it remains a challenge to fabricate such electrodes with processes that are both scalable and reproducible. Toward this end, here, we demonstrate how the fabrication of such an electrode is made possible by combining tunable, free-standing, and aligned carbon nanotube (CNT) foams with aqueous electrodeposition of a model intercalation-type transition metal oxide, MoO3. Morphological characterization including X-ray microcomputed tomography indicates that the obtained composite is homogeneous. Electrodes with an active mass loading of up to 18 mg cm–2 reached near-theoretical Li-ion intercalation capacities within 1.7 h. The highest-mass loading electrodes also led to areal and volumetric capacities of 4.5 mA h cm–2 and 290 mA h cm–3, respectively, with 55% capacity retention for charge/discharge times of 10 min. Overall, this work demonstrates a scalable, deterministic 3D electrode design strategy using electrodeposition and free-standing, aligned CNT foams that lead to high areal and volumetric capacities and good rate performance due to well-distributed charge transport pathways.
doi_str_mv 10.1021/acs.energyfuels.1c02352
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_1c02352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d01426</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-38eca56685bb6494e4712563db56e22473470c3ba61c32b239295da6fd748bd23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDfgHUvyInWRZ9QFIhS4o68hxJsVVEle2Q8nfk9JKsGM1Gt177uIgdE_JhBJGH5T2E2jBbfuqg9pPqCaMC3aBRlQwEgnCsks0ImmaRESy-BrdeL8jhEieihE6bOxBuRLPIYBrTGt8MBrzOV78TOK3YJ3aAl7UoIOzJeCp0x8mDF_nwONPo36zvfUmGNtiW-EXW_dFCW3X4PWXGTjbBotnrxu8tKrxt-iqUrWHu_Mdo_flYjN7ilbrx-fZdBUpTmiIeApaCSlTURQyzmKIE8qE5GUhJDAWJzxOiOaFklRzVjCesUyUSlZlEqdFyfgYJadd7az3Dqp870yjXJ9Tkh_95YO__I-__OxvIPmJPBZ2tnOtOqb_UN_IxHwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams</title><source>ACS Publications</source><creator>Spencer, Michael A ; Yildiz, Ozkan ; Kamboj, Ishita ; Bradford, Philip D ; Augustyn, Veronica</creator><creatorcontrib>Spencer, Michael A ; Yildiz, Ozkan ; Kamboj, Ishita ; Bradford, Philip D ; Augustyn, Veronica</creatorcontrib><description>Three-dimensional (3D) deterministic design of electrodes could enable simultaneous high energy and power density for electrochemical energy storage devices. The goal of such electrode architectures is to provide adequate charge (electron and ion) transport pathways for high power, while maintaining high active material loading (&gt;10 mg cm–2) for high areal and volumetric capacities. However, it remains a challenge to fabricate such electrodes with processes that are both scalable and reproducible. Toward this end, here, we demonstrate how the fabrication of such an electrode is made possible by combining tunable, free-standing, and aligned carbon nanotube (CNT) foams with aqueous electrodeposition of a model intercalation-type transition metal oxide, MoO3. Morphological characterization including X-ray microcomputed tomography indicates that the obtained composite is homogeneous. Electrodes with an active mass loading of up to 18 mg cm–2 reached near-theoretical Li-ion intercalation capacities within 1.7 h. The highest-mass loading electrodes also led to areal and volumetric capacities of 4.5 mA h cm–2 and 290 mA h cm–3, respectively, with 55% capacity retention for charge/discharge times of 10 min. Overall, this work demonstrates a scalable, deterministic 3D electrode design strategy using electrodeposition and free-standing, aligned CNT foams that lead to high areal and volumetric capacities and good rate performance due to well-distributed charge transport pathways.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.1c02352</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Batteries and Energy Storage</subject><ispartof>Energy &amp; fuels, 2021-10, Vol.35 (19), p.16183-16193</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-38eca56685bb6494e4712563db56e22473470c3ba61c32b239295da6fd748bd23</citedby><cites>FETCH-LOGICAL-a301t-38eca56685bb6494e4712563db56e22473470c3ba61c32b239295da6fd748bd23</cites><orcidid>0000-0001-9885-2882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c02352$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c02352$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Spencer, Michael A</creatorcontrib><creatorcontrib>Yildiz, Ozkan</creatorcontrib><creatorcontrib>Kamboj, Ishita</creatorcontrib><creatorcontrib>Bradford, Philip D</creatorcontrib><creatorcontrib>Augustyn, Veronica</creatorcontrib><title>Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Three-dimensional (3D) deterministic design of electrodes could enable simultaneous high energy and power density for electrochemical energy storage devices. The goal of such electrode architectures is to provide adequate charge (electron and ion) transport pathways for high power, while maintaining high active material loading (&gt;10 mg cm–2) for high areal and volumetric capacities. However, it remains a challenge to fabricate such electrodes with processes that are both scalable and reproducible. Toward this end, here, we demonstrate how the fabrication of such an electrode is made possible by combining tunable, free-standing, and aligned carbon nanotube (CNT) foams with aqueous electrodeposition of a model intercalation-type transition metal oxide, MoO3. Morphological characterization including X-ray microcomputed tomography indicates that the obtained composite is homogeneous. Electrodes with an active mass loading of up to 18 mg cm–2 reached near-theoretical Li-ion intercalation capacities within 1.7 h. The highest-mass loading electrodes also led to areal and volumetric capacities of 4.5 mA h cm–2 and 290 mA h cm–3, respectively, with 55% capacity retention for charge/discharge times of 10 min. Overall, this work demonstrates a scalable, deterministic 3D electrode design strategy using electrodeposition and free-standing, aligned CNT foams that lead to high areal and volumetric capacities and good rate performance due to well-distributed charge transport pathways.</description><subject>Batteries and Energy Storage</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDfgHUvyInWRZ9QFIhS4o68hxJsVVEle2Q8nfk9JKsGM1Gt177uIgdE_JhBJGH5T2E2jBbfuqg9pPqCaMC3aBRlQwEgnCsks0ImmaRESy-BrdeL8jhEieihE6bOxBuRLPIYBrTGt8MBrzOV78TOK3YJ3aAl7UoIOzJeCp0x8mDF_nwONPo36zvfUmGNtiW-EXW_dFCW3X4PWXGTjbBotnrxu8tKrxt-iqUrWHu_Mdo_flYjN7ilbrx-fZdBUpTmiIeApaCSlTURQyzmKIE8qE5GUhJDAWJzxOiOaFklRzVjCesUyUSlZlEqdFyfgYJadd7az3Dqp870yjXJ9Tkh_95YO__I-__OxvIPmJPBZ2tnOtOqb_UN_IxHwI</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Spencer, Michael A</creator><creator>Yildiz, Ozkan</creator><creator>Kamboj, Ishita</creator><creator>Bradford, Philip D</creator><creator>Augustyn, Veronica</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9885-2882</orcidid></search><sort><creationdate>20211007</creationdate><title>Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams</title><author>Spencer, Michael A ; Yildiz, Ozkan ; Kamboj, Ishita ; Bradford, Philip D ; Augustyn, Veronica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-38eca56685bb6494e4712563db56e22473470c3ba61c32b239295da6fd748bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries and Energy Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Michael A</creatorcontrib><creatorcontrib>Yildiz, Ozkan</creatorcontrib><creatorcontrib>Kamboj, Ishita</creatorcontrib><creatorcontrib>Bradford, Philip D</creatorcontrib><creatorcontrib>Augustyn, Veronica</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spencer, Michael A</au><au>Yildiz, Ozkan</au><au>Kamboj, Ishita</au><au>Bradford, Philip D</au><au>Augustyn, Veronica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>35</volume><issue>19</issue><spage>16183</spage><epage>16193</epage><pages>16183-16193</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Three-dimensional (3D) deterministic design of electrodes could enable simultaneous high energy and power density for electrochemical energy storage devices. The goal of such electrode architectures is to provide adequate charge (electron and ion) transport pathways for high power, while maintaining high active material loading (&gt;10 mg cm–2) for high areal and volumetric capacities. However, it remains a challenge to fabricate such electrodes with processes that are both scalable and reproducible. Toward this end, here, we demonstrate how the fabrication of such an electrode is made possible by combining tunable, free-standing, and aligned carbon nanotube (CNT) foams with aqueous electrodeposition of a model intercalation-type transition metal oxide, MoO3. Morphological characterization including X-ray microcomputed tomography indicates that the obtained composite is homogeneous. Electrodes with an active mass loading of up to 18 mg cm–2 reached near-theoretical Li-ion intercalation capacities within 1.7 h. The highest-mass loading electrodes also led to areal and volumetric capacities of 4.5 mA h cm–2 and 290 mA h cm–3, respectively, with 55% capacity retention for charge/discharge times of 10 min. Overall, this work demonstrates a scalable, deterministic 3D electrode design strategy using electrodeposition and free-standing, aligned CNT foams that lead to high areal and volumetric capacities and good rate performance due to well-distributed charge transport pathways.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.1c02352</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9885-2882</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2021-10, Vol.35 (19), p.16183-16193
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_1c02352
source ACS Publications
subjects Batteries and Energy Storage
title Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Deterministic%203D%20Energy%20Storage%20Electrode%20Architectures%20via%20Electrodeposition%20of%20Molybdenum%20Oxide%20onto%20CNT%20Foams&rft.jtitle=Energy%20&%20fuels&rft.au=Spencer,%20Michael%20A&rft.date=2021-10-07&rft.volume=35&rft.issue=19&rft.spage=16183&rft.epage=16193&rft.pages=16183-16193&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.1c02352&rft_dat=%3Cacs_cross%3Ed01426%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true