Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration
The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, f...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2021-05, Vol.35 (9), p.7833-7843 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7843 |
---|---|
container_issue | 9 |
container_start_page | 7833 |
container_title | Energy & fuels |
container_volume | 35 |
creator | Ma, Jingyuan Pang, Shaocong Zhou, Wei Xia, Boru An, Yuxiu |
description | The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required. |
doi_str_mv | 10.1021/acs.energyfuels.1c00319 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_1c00319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h19601131</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFafwX2B1NlNms0epVZbKCpUz2GymW23xKTsbgvx6W2oB2-eBmbm--H_GLsXMBEgxQOaMKGW_Ka3B2rCRBiAVOgLNhJTCckUpL5kIygKlUAus2t2E8IOAPK0mI7Y-2t3pIY_Ee35_BDJRGf4umuO1MbAbef5OmLlGvft2g2fNdhzbGu-bLeucnHYrbfYEF_0tcfouvaWXVlsAt39zjH7fJ5_zBbJ6u1lOXtcJZiCiIkFVFpJaQQgCFR1VtU5GKOltJRZVEVOxpKqJZ1aaAUotFCi1kVmZVVTOmbqnGt8F4InW-69-0LflwLKQUx5ElP-EVP-ijmR6ZkcHnbdwbc4XP-hfgDLvm59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</title><source>ACS Publications</source><creator>Ma, Jingyuan ; Pang, Shaocong ; Zhou, Wei ; Xia, Boru ; An, Yuxiu</creator><creatorcontrib>Ma, Jingyuan ; Pang, Shaocong ; Zhou, Wei ; Xia, Boru ; An, Yuxiu</creatorcontrib><description>The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.1c00319</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Fossil Fuels</subject><ispartof>Energy & fuels, 2021-05, Vol.35 (9), p.7833-7843</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</citedby><cites>FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</cites><orcidid>0000-0002-3156-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c00319$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c00319$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Pang, Shaocong</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Xia, Boru</creatorcontrib><creatorcontrib>An, Yuxiu</creatorcontrib><title>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.</description><subject>Fossil Fuels</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFafwX2B1NlNms0epVZbKCpUz2GymW23xKTsbgvx6W2oB2-eBmbm--H_GLsXMBEgxQOaMKGW_Ka3B2rCRBiAVOgLNhJTCckUpL5kIygKlUAus2t2E8IOAPK0mI7Y-2t3pIY_Ee35_BDJRGf4umuO1MbAbef5OmLlGvft2g2fNdhzbGu-bLeucnHYrbfYEF_0tcfouvaWXVlsAt39zjH7fJ5_zBbJ6u1lOXtcJZiCiIkFVFpJaQQgCFR1VtU5GKOltJRZVEVOxpKqJZ1aaAUotFCi1kVmZVVTOmbqnGt8F4InW-69-0LflwLKQUx5ElP-EVP-ijmR6ZkcHnbdwbc4XP-hfgDLvm59</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Ma, Jingyuan</creator><creator>Pang, Shaocong</creator><creator>Zhou, Wei</creator><creator>Xia, Boru</creator><creator>An, Yuxiu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3156-0655</orcidid></search><sort><creationdate>20210506</creationdate><title>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</title><author>Ma, Jingyuan ; Pang, Shaocong ; Zhou, Wei ; Xia, Boru ; An, Yuxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fossil Fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Pang, Shaocong</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Xia, Boru</creatorcontrib><creatorcontrib>An, Yuxiu</creatorcontrib><collection>CrossRef</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jingyuan</au><au>Pang, Shaocong</au><au>Zhou, Wei</au><au>Xia, Boru</au><au>An, Yuxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2021-05-06</date><risdate>2021</risdate><volume>35</volume><issue>9</issue><spage>7833</spage><epage>7843</epage><pages>7833-7843</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.1c00319</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3156-0655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2021-05, Vol.35 (9), p.7833-7843 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_energyfuels_1c00319 |
source | ACS Publications |
subjects | Fossil Fuels |
title | Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Deep%20Eutectic%20Solvents%20for%20Stabilizing%20Clay%20and%20Inhibiting%20Shale%20Hydration&rft.jtitle=Energy%20&%20fuels&rft.au=Ma,%20Jingyuan&rft.date=2021-05-06&rft.volume=35&rft.issue=9&rft.spage=7833&rft.epage=7843&rft.pages=7833-7843&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.1c00319&rft_dat=%3Cacs_cross%3Eh19601131%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |