Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration

The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2021-05, Vol.35 (9), p.7833-7843
Hauptverfasser: Ma, Jingyuan, Pang, Shaocong, Zhou, Wei, Xia, Boru, An, Yuxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7843
container_issue 9
container_start_page 7833
container_title Energy & fuels
container_volume 35
creator Ma, Jingyuan
Pang, Shaocong
Zhou, Wei
Xia, Boru
An, Yuxiu
description The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.
doi_str_mv 10.1021/acs.energyfuels.1c00319
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_1c00319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h19601131</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFafwX2B1NlNms0epVZbKCpUz2GymW23xKTsbgvx6W2oB2-eBmbm--H_GLsXMBEgxQOaMKGW_Ka3B2rCRBiAVOgLNhJTCckUpL5kIygKlUAus2t2E8IOAPK0mI7Y-2t3pIY_Ee35_BDJRGf4umuO1MbAbef5OmLlGvft2g2fNdhzbGu-bLeucnHYrbfYEF_0tcfouvaWXVlsAt39zjH7fJ5_zBbJ6u1lOXtcJZiCiIkFVFpJaQQgCFR1VtU5GKOltJRZVEVOxpKqJZ1aaAUotFCi1kVmZVVTOmbqnGt8F4InW-69-0LflwLKQUx5ElP-EVP-ijmR6ZkcHnbdwbc4XP-hfgDLvm59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</title><source>ACS Publications</source><creator>Ma, Jingyuan ; Pang, Shaocong ; Zhou, Wei ; Xia, Boru ; An, Yuxiu</creator><creatorcontrib>Ma, Jingyuan ; Pang, Shaocong ; Zhou, Wei ; Xia, Boru ; An, Yuxiu</creatorcontrib><description>The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.1c00319</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Fossil Fuels</subject><ispartof>Energy &amp; fuels, 2021-05, Vol.35 (9), p.7833-7843</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</citedby><cites>FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</cites><orcidid>0000-0002-3156-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c00319$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c00319$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Pang, Shaocong</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Xia, Boru</creatorcontrib><creatorcontrib>An, Yuxiu</creatorcontrib><title>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.</description><subject>Fossil Fuels</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFafwX2B1NlNms0epVZbKCpUz2GymW23xKTsbgvx6W2oB2-eBmbm--H_GLsXMBEgxQOaMKGW_Ka3B2rCRBiAVOgLNhJTCckUpL5kIygKlUAus2t2E8IOAPK0mI7Y-2t3pIY_Ee35_BDJRGf4umuO1MbAbef5OmLlGvft2g2fNdhzbGu-bLeucnHYrbfYEF_0tcfouvaWXVlsAt39zjH7fJ5_zBbJ6u1lOXtcJZiCiIkFVFpJaQQgCFR1VtU5GKOltJRZVEVOxpKqJZ1aaAUotFCi1kVmZVVTOmbqnGt8F4InW-69-0LflwLKQUx5ElP-EVP-ijmR6ZkcHnbdwbc4XP-hfgDLvm59</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Ma, Jingyuan</creator><creator>Pang, Shaocong</creator><creator>Zhou, Wei</creator><creator>Xia, Boru</creator><creator>An, Yuxiu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3156-0655</orcidid></search><sort><creationdate>20210506</creationdate><title>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</title><author>Ma, Jingyuan ; Pang, Shaocong ; Zhou, Wei ; Xia, Boru ; An, Yuxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-f0a79722c10a01a7d4bd60cc922fe4fa786ecfe7d2e520970a19171d984f2bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fossil Fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Pang, Shaocong</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Xia, Boru</creatorcontrib><creatorcontrib>An, Yuxiu</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jingyuan</au><au>Pang, Shaocong</au><au>Zhou, Wei</au><au>Xia, Boru</au><au>An, Yuxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2021-05-06</date><risdate>2021</risdate><volume>35</volume><issue>9</issue><spage>7833</spage><epage>7843</epage><pages>7833-7843</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The hydration and swelling of shale caused by water in water-based drilling fluids is one of the most important problems that causes wellbore instability. The development of high-performance shale inhibitors is an important prerequisite for ensuring the drilling of shale formations. In this study, four deep eutectic solvents (DESs) based on choline chloride (urea-DES, Gly-DES, Oxa-DES, and Cit-DES) were synthesized and introduced as promising shale inhibitors. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR) were used to characterize the structural information on DESs. The inhibition ability of DESs was evaluated by a bentonite inhibition test, a linear swelling test, and a settlement test. Compared with the traditional inhibitors, such as potassium chloride (KCl) and polyether amine, the four DESs can effectively inhibit the hydration and swelling of shale. Five wt % DESs can maintain low rheological parameters when the content of sodium bentonite (Na-bent) was as high as 40 wt %. Among them, Gly-DES not only exhibited the most efficient inhibition capability but also had the advantage of not affecting the basic performance of the drilling fluid. Inhibitory mechanism analysis showed that the electrostatic interaction and hydrogen bonding between DESs and sodium bentonite (Na-bent) are the most important factors to inhibit clay hydration. Besides, the reduction of the surface tension of the liquid by DESs effectively weakened the driving force for water to penetrate the Na-bent layer. Finally, it is important to note that, although DESs exhibited strong inhibitory capabilities, some DESs, such as Oxa-DES and Cit-DES, are prone to adversely affect the basic performance of drilling fluids. Therefore, a careful selection is required.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.1c00319</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3156-0655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2021-05, Vol.35 (9), p.7833-7843
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_1c00319
source ACS Publications
subjects Fossil Fuels
title Novel Deep Eutectic Solvents for Stabilizing Clay and Inhibiting Shale Hydration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Deep%20Eutectic%20Solvents%20for%20Stabilizing%20Clay%20and%20Inhibiting%20Shale%20Hydration&rft.jtitle=Energy%20&%20fuels&rft.au=Ma,%20Jingyuan&rft.date=2021-05-06&rft.volume=35&rft.issue=9&rft.spage=7833&rft.epage=7843&rft.pages=7833-7843&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.1c00319&rft_dat=%3Cacs_cross%3Eh19601131%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true