Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics
Biocompatible conductors are important components for soft and stretchable bioelectronics for digital healthcare, which have attracted extensive research efforts. Natural biopolymers, compared to other polymers, possess unique features that make them promising building blocks for biocompatible condu...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2021-02, Vol.121 (4), p.2109-2146 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2146 |
---|---|
container_issue | 4 |
container_start_page | 2109 |
container_title | Chemical reviews |
container_volume | 121 |
creator | Wang, Chunya Yokota, Tomoyuki Someya, Takao |
description | Biocompatible conductors are important components for soft and stretchable bioelectronics for digital healthcare, which have attracted extensive research efforts. Natural biopolymers, compared to other polymers, possess unique features that make them promising building blocks for biocompatible conductors, such as good biocompatibility/biodegradability, natural abundance, sustainability, and capability, can be processed into various functional formats with tunable material properties under benign conditions. In this comprehensive review, we focus on the recent advances in biocompatible conductors based on natural biopolymers for stretchable bioelectronics. We first give a brief introduction of conductive components and natural polymers and summarize the recent development of biocompatible conductors based on representative natural biopolymers including protein (silk), polypeptide (gelatin), and polysaccharide (alginate). The design and fabrication strategies for biocompatible conductors based on these representative biopolymers are outlined, after the chemical structure and properties of such biopolymers are presented. Then we discuss the electronic component–biopolymer interface and bioelectronic–biological tissue (skin and internal tissues) interface, highlight various fabrication techniques of biocompatible conductors for soft bioelectronics, and introduce representative examples of utilizing natural biopolymer-based biocompatible conductors for on-skin bioelectronics, textile-based wearable electronics, and implantable bioelectronics for digital healthcare. Finally, we present concluding remarks on challenges and prospects for designing natural biopolymers for soft biocompatible conductors and bioelectronics. |
doi_str_mv | 10.1021/acs.chemrev.0c00897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemrev_0c00897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498443116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-3cb39f908e0526c83575542467f32a79399f5964d6b5aa6f160e4746feba8fc33</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gSADb7zpluarzaUOv2CooF6XND1hHW1Tk1TYv7dldRdeeBVOzvO-CQ9ClzFexJjES6X9Qm-gdvC9wBrjVCZHaBpzgiORSnyMphhjGREh-ASdeb_tR85JcoomlDKBKUmm6O1Fhc6pan5X2tZWuxpcdKc8FMOFtnWrQplXMF_Zpuh0sM7PjXXz9-Ag6I0aVj0IFejgbFNqf45OjKo8XIznDH0-3H-snqL16-Pz6nYdKUZliKjOqTQSp4A5ETqlPOGcESYSQ4lKJJXScClYIXKulDCxwMASJgzkKjWa0hm62fe2zn514ENWl15DVakGbOczwhKJGaHpgF7_Qbe2c03_u56SKWM0jkVP0T2lnfXegclaV9bK7bIYZ4PwrBeejcKzUXifuhq7u7yG4pD5NdwDyz0wpA_v_lf5A0-Vjl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498443116</pqid></control><display><type>article</type><title>Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics</title><source>ACS Publications</source><creator>Wang, Chunya ; Yokota, Tomoyuki ; Someya, Takao</creator><creatorcontrib>Wang, Chunya ; Yokota, Tomoyuki ; Someya, Takao</creatorcontrib><description>Biocompatible conductors are important components for soft and stretchable bioelectronics for digital healthcare, which have attracted extensive research efforts. Natural biopolymers, compared to other polymers, possess unique features that make them promising building blocks for biocompatible conductors, such as good biocompatibility/biodegradability, natural abundance, sustainability, and capability, can be processed into various functional formats with tunable material properties under benign conditions. In this comprehensive review, we focus on the recent advances in biocompatible conductors based on natural biopolymers for stretchable bioelectronics. We first give a brief introduction of conductive components and natural polymers and summarize the recent development of biocompatible conductors based on representative natural biopolymers including protein (silk), polypeptide (gelatin), and polysaccharide (alginate). The design and fabrication strategies for biocompatible conductors based on these representative biopolymers are outlined, after the chemical structure and properties of such biopolymers are presented. Then we discuss the electronic component–biopolymer interface and bioelectronic–biological tissue (skin and internal tissues) interface, highlight various fabrication techniques of biocompatible conductors for soft bioelectronics, and introduce representative examples of utilizing natural biopolymer-based biocompatible conductors for on-skin bioelectronics, textile-based wearable electronics, and implantable bioelectronics for digital healthcare. Finally, we present concluding remarks on challenges and prospects for designing natural biopolymers for soft biocompatible conductors and bioelectronics.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c00897</identifier><identifier>PMID: 33460327</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alginates ; Biocompatibility ; Biodegradability ; Biodegradation ; Bioelectricity ; Biopolymers ; Conductors ; Electronic components ; Fabrication ; Gelatin ; Health care ; Material properties ; Natural polymers ; Polymers ; Polypeptides ; Polysaccharides ; Silk ; Skin ; Sustainability ; Tissues</subject><ispartof>Chemical reviews, 2021-02, Vol.121 (4), p.2109-2146</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 24, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-3cb39f908e0526c83575542467f32a79399f5964d6b5aa6f160e4746feba8fc33</citedby><cites>FETCH-LOGICAL-a439t-3cb39f908e0526c83575542467f32a79399f5964d6b5aa6f160e4746feba8fc33</cites><orcidid>0000-0003-1546-8864 ; 0000-0003-3051-1138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c00897$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c00897$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33460327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chunya</creatorcontrib><creatorcontrib>Yokota, Tomoyuki</creatorcontrib><creatorcontrib>Someya, Takao</creatorcontrib><title>Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Biocompatible conductors are important components for soft and stretchable bioelectronics for digital healthcare, which have attracted extensive research efforts. Natural biopolymers, compared to other polymers, possess unique features that make them promising building blocks for biocompatible conductors, such as good biocompatibility/biodegradability, natural abundance, sustainability, and capability, can be processed into various functional formats with tunable material properties under benign conditions. In this comprehensive review, we focus on the recent advances in biocompatible conductors based on natural biopolymers for stretchable bioelectronics. We first give a brief introduction of conductive components and natural polymers and summarize the recent development of biocompatible conductors based on representative natural biopolymers including protein (silk), polypeptide (gelatin), and polysaccharide (alginate). The design and fabrication strategies for biocompatible conductors based on these representative biopolymers are outlined, after the chemical structure and properties of such biopolymers are presented. Then we discuss the electronic component–biopolymer interface and bioelectronic–biological tissue (skin and internal tissues) interface, highlight various fabrication techniques of biocompatible conductors for soft bioelectronics, and introduce representative examples of utilizing natural biopolymer-based biocompatible conductors for on-skin bioelectronics, textile-based wearable electronics, and implantable bioelectronics for digital healthcare. Finally, we present concluding remarks on challenges and prospects for designing natural biopolymers for soft biocompatible conductors and bioelectronics.</description><subject>Alginates</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Bioelectricity</subject><subject>Biopolymers</subject><subject>Conductors</subject><subject>Electronic components</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Health care</subject><subject>Material properties</subject><subject>Natural polymers</subject><subject>Polymers</subject><subject>Polypeptides</subject><subject>Polysaccharides</subject><subject>Silk</subject><subject>Skin</subject><subject>Sustainability</subject><subject>Tissues</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk5_gSADb7zpluarzaUOv2CooF6XND1hHW1Tk1TYv7dldRdeeBVOzvO-CQ9ClzFexJjES6X9Qm-gdvC9wBrjVCZHaBpzgiORSnyMphhjGREh-ASdeb_tR85JcoomlDKBKUmm6O1Fhc6pan5X2tZWuxpcdKc8FMOFtnWrQplXMF_Zpuh0sM7PjXXz9-Ag6I0aVj0IFejgbFNqf45OjKo8XIznDH0-3H-snqL16-Pz6nYdKUZliKjOqTQSp4A5ETqlPOGcESYSQ4lKJJXScClYIXKulDCxwMASJgzkKjWa0hm62fe2zn514ENWl15DVakGbOczwhKJGaHpgF7_Qbe2c03_u56SKWM0jkVP0T2lnfXegclaV9bK7bIYZ4PwrBeejcKzUXifuhq7u7yG4pD5NdwDyz0wpA_v_lf5A0-Vjl8</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Wang, Chunya</creator><creator>Yokota, Tomoyuki</creator><creator>Someya, Takao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1546-8864</orcidid><orcidid>https://orcid.org/0000-0003-3051-1138</orcidid></search><sort><creationdate>20210224</creationdate><title>Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics</title><author>Wang, Chunya ; Yokota, Tomoyuki ; Someya, Takao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-3cb39f908e0526c83575542467f32a79399f5964d6b5aa6f160e4746feba8fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alginates</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Bioelectricity</topic><topic>Biopolymers</topic><topic>Conductors</topic><topic>Electronic components</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Health care</topic><topic>Material properties</topic><topic>Natural polymers</topic><topic>Polymers</topic><topic>Polypeptides</topic><topic>Polysaccharides</topic><topic>Silk</topic><topic>Skin</topic><topic>Sustainability</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunya</creatorcontrib><creatorcontrib>Yokota, Tomoyuki</creatorcontrib><creatorcontrib>Someya, Takao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunya</au><au>Yokota, Tomoyuki</au><au>Someya, Takao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-02-24</date><risdate>2021</risdate><volume>121</volume><issue>4</issue><spage>2109</spage><epage>2146</epage><pages>2109-2146</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Biocompatible conductors are important components for soft and stretchable bioelectronics for digital healthcare, which have attracted extensive research efforts. Natural biopolymers, compared to other polymers, possess unique features that make them promising building blocks for biocompatible conductors, such as good biocompatibility/biodegradability, natural abundance, sustainability, and capability, can be processed into various functional formats with tunable material properties under benign conditions. In this comprehensive review, we focus on the recent advances in biocompatible conductors based on natural biopolymers for stretchable bioelectronics. We first give a brief introduction of conductive components and natural polymers and summarize the recent development of biocompatible conductors based on representative natural biopolymers including protein (silk), polypeptide (gelatin), and polysaccharide (alginate). The design and fabrication strategies for biocompatible conductors based on these representative biopolymers are outlined, after the chemical structure and properties of such biopolymers are presented. Then we discuss the electronic component–biopolymer interface and bioelectronic–biological tissue (skin and internal tissues) interface, highlight various fabrication techniques of biocompatible conductors for soft bioelectronics, and introduce representative examples of utilizing natural biopolymer-based biocompatible conductors for on-skin bioelectronics, textile-based wearable electronics, and implantable bioelectronics for digital healthcare. Finally, we present concluding remarks on challenges and prospects for designing natural biopolymers for soft biocompatible conductors and bioelectronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33460327</pmid><doi>10.1021/acs.chemrev.0c00897</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-1546-8864</orcidid><orcidid>https://orcid.org/0000-0003-3051-1138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2021-02, Vol.121 (4), p.2109-2146 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemrev_0c00897 |
source | ACS Publications |
subjects | Alginates Biocompatibility Biodegradability Biodegradation Bioelectricity Biopolymers Conductors Electronic components Fabrication Gelatin Health care Material properties Natural polymers Polymers Polypeptides Polysaccharides Silk Skin Sustainability Tissues |
title | Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Biopolymer-Based%20Biocompatible%20Conductors%20for%20Stretchable%20Bioelectronics&rft.jtitle=Chemical%20reviews&rft.au=Wang,%20Chunya&rft.date=2021-02-24&rft.volume=121&rft.issue=4&rft.spage=2109&rft.epage=2146&rft.pages=2109-2146&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c00897&rft_dat=%3Cproquest_cross%3E2498443116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498443116&rft_id=info:pmid/33460327&rfr_iscdi=true |