Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis

Molecular layer deposition (MLD) is an increasingly important thin film synthesis technique in areas such as sensors, microelectronics, protective coatings, and catalysis. However, new analytical approaches are needed to advance fundamental understanding of deposition reaction mechanisms. This work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-02, Vol.32 (4), p.1553-1563
Hauptverfasser: Nye, Rachel A, Kelliher, Andrew P, Gaskins, John T, Hopkins, Patrick E, Parsons, Gregory N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1563
container_issue 4
container_start_page 1553
container_title Chemistry of materials
container_volume 32
creator Nye, Rachel A
Kelliher, Andrew P
Gaskins, John T
Hopkins, Patrick E
Parsons, Gregory N
description Molecular layer deposition (MLD) is an increasingly important thin film synthesis technique in areas such as sensors, microelectronics, protective coatings, and catalysis. However, new analytical approaches are needed to advance fundamental understanding of deposition reaction mechanisms. This work introduces ultrafast laser-based pump–probe picosecond acoustics analysis to characterize thickness-dependent properties of MLD films. Polyurea films are deposited on hydroxylated SiO2 substrates using 1,4-phenylene diisocyanate and a diamine reactant, either ethylenediamine (PDIC/ED polymer) or 1,6-hexanediamine (PDIC/HD), and the expected polymer structure is confirmed by Fourier transform infrared spectroscopy. During the first ∼20 nm of deposition, spectroscopic ellipsometry shows constant refractive index but decreasing growth rate before reaching steady state. X-ray reflectivity also shows approximately constant density during initial growth. However, the measured picosecond acoustics signatures demonstrate a marked increase in sound speed initially, indicating a transition in the physical film structure. The observed trends are ascribed to a transition in the kinetics of active site production and termination with increasing thickness, leading to changes in polymer and oligomer connectivity within the film. These findings provide a basis for better understanding MLD processes and reaction mechanisms that determine deposited film properties.
doi_str_mv 10.1021/acs.chemmater.9b04702
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b04702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b825440775</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-2445b5d683b08dbdb5eca3261ad3234652a077c9de6a49bb6cb6326798cdd1f23</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EEqXwCUj-gRTbifNYVgUKUiu6oOvo-lHiKrUr3wSUvydVK7asZjE6o9Eh5JGzGWeCP4HGmW7s4QCdjbNKsaxg4opMuBQskYyJazJhZVUkWSHzW3KHuGeMj2g5Ic3WGxuxA2-c_6Lr0FrdtxDpCgYb6bM9BnSdC54uY_jpGrq2ugHv8IDUeboJ7dBHC_TbAd04HdDq4A2d69Bj5zTSuYd2QIf35GYHLdqHS07J9vXlc_GWrD6W74v5KgFRyS4RWSaVNHmZKlYaZZS0GlKRczCpSLNcCmBFoStjc8gqpXKt8rEuqlIbw3cinRJ53tUxIEa7q4_RHSAONWf1SVc96qr_dNUXXSPHz9yp3oc-jr_xH-YXuwZ1eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis</title><source>ACS Publications</source><creator>Nye, Rachel A ; Kelliher, Andrew P ; Gaskins, John T ; Hopkins, Patrick E ; Parsons, Gregory N</creator><creatorcontrib>Nye, Rachel A ; Kelliher, Andrew P ; Gaskins, John T ; Hopkins, Patrick E ; Parsons, Gregory N</creatorcontrib><description>Molecular layer deposition (MLD) is an increasingly important thin film synthesis technique in areas such as sensors, microelectronics, protective coatings, and catalysis. However, new analytical approaches are needed to advance fundamental understanding of deposition reaction mechanisms. This work introduces ultrafast laser-based pump–probe picosecond acoustics analysis to characterize thickness-dependent properties of MLD films. Polyurea films are deposited on hydroxylated SiO2 substrates using 1,4-phenylene diisocyanate and a diamine reactant, either ethylenediamine (PDIC/ED polymer) or 1,6-hexanediamine (PDIC/HD), and the expected polymer structure is confirmed by Fourier transform infrared spectroscopy. During the first ∼20 nm of deposition, spectroscopic ellipsometry shows constant refractive index but decreasing growth rate before reaching steady state. X-ray reflectivity also shows approximately constant density during initial growth. However, the measured picosecond acoustics signatures demonstrate a marked increase in sound speed initially, indicating a transition in the physical film structure. The observed trends are ascribed to a transition in the kinetics of active site production and termination with increasing thickness, leading to changes in polymer and oligomer connectivity within the film. These findings provide a basis for better understanding MLD processes and reaction mechanisms that determine deposited film properties.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b04702</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-02, Vol.32 (4), p.1553-1563</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-2445b5d683b08dbdb5eca3261ad3234652a077c9de6a49bb6cb6326798cdd1f23</citedby><cites>FETCH-LOGICAL-a295t-2445b5d683b08dbdb5eca3261ad3234652a077c9de6a49bb6cb6326798cdd1f23</cites><orcidid>0000-0001-8622-5902 ; 0000-0003-3233-4251 ; 0000-0002-0048-5859 ; 0000-0001-9908-7158 ; 0000-0002-3403-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b04702$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b04702$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Nye, Rachel A</creatorcontrib><creatorcontrib>Kelliher, Andrew P</creatorcontrib><creatorcontrib>Gaskins, John T</creatorcontrib><creatorcontrib>Hopkins, Patrick E</creatorcontrib><creatorcontrib>Parsons, Gregory N</creatorcontrib><title>Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Molecular layer deposition (MLD) is an increasingly important thin film synthesis technique in areas such as sensors, microelectronics, protective coatings, and catalysis. However, new analytical approaches are needed to advance fundamental understanding of deposition reaction mechanisms. This work introduces ultrafast laser-based pump–probe picosecond acoustics analysis to characterize thickness-dependent properties of MLD films. Polyurea films are deposited on hydroxylated SiO2 substrates using 1,4-phenylene diisocyanate and a diamine reactant, either ethylenediamine (PDIC/ED polymer) or 1,6-hexanediamine (PDIC/HD), and the expected polymer structure is confirmed by Fourier transform infrared spectroscopy. During the first ∼20 nm of deposition, spectroscopic ellipsometry shows constant refractive index but decreasing growth rate before reaching steady state. X-ray reflectivity also shows approximately constant density during initial growth. However, the measured picosecond acoustics signatures demonstrate a marked increase in sound speed initially, indicating a transition in the physical film structure. The observed trends are ascribed to a transition in the kinetics of active site production and termination with increasing thickness, leading to changes in polymer and oligomer connectivity within the film. These findings provide a basis for better understanding MLD processes and reaction mechanisms that determine deposited film properties.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAURC0EEqXwCUj-gRTbifNYVgUKUiu6oOvo-lHiKrUr3wSUvydVK7asZjE6o9Eh5JGzGWeCP4HGmW7s4QCdjbNKsaxg4opMuBQskYyJazJhZVUkWSHzW3KHuGeMj2g5Ic3WGxuxA2-c_6Lr0FrdtxDpCgYb6bM9BnSdC54uY_jpGrq2ugHv8IDUeboJ7dBHC_TbAd04HdDq4A2d69Bj5zTSuYd2QIf35GYHLdqHS07J9vXlc_GWrD6W74v5KgFRyS4RWSaVNHmZKlYaZZS0GlKRczCpSLNcCmBFoStjc8gqpXKt8rEuqlIbw3cinRJ53tUxIEa7q4_RHSAONWf1SVc96qr_dNUXXSPHz9yp3oc-jr_xH-YXuwZ1eg</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Nye, Rachel A</creator><creator>Kelliher, Andrew P</creator><creator>Gaskins, John T</creator><creator>Hopkins, Patrick E</creator><creator>Parsons, Gregory N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0003-3233-4251</orcidid><orcidid>https://orcid.org/0000-0002-0048-5859</orcidid><orcidid>https://orcid.org/0000-0001-9908-7158</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid></search><sort><creationdate>20200225</creationdate><title>Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis</title><author>Nye, Rachel A ; Kelliher, Andrew P ; Gaskins, John T ; Hopkins, Patrick E ; Parsons, Gregory N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-2445b5d683b08dbdb5eca3261ad3234652a077c9de6a49bb6cb6326798cdd1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nye, Rachel A</creatorcontrib><creatorcontrib>Kelliher, Andrew P</creatorcontrib><creatorcontrib>Gaskins, John T</creatorcontrib><creatorcontrib>Hopkins, Patrick E</creatorcontrib><creatorcontrib>Parsons, Gregory N</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nye, Rachel A</au><au>Kelliher, Andrew P</au><au>Gaskins, John T</au><au>Hopkins, Patrick E</au><au>Parsons, Gregory N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>1553</spage><epage>1563</epage><pages>1553-1563</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Molecular layer deposition (MLD) is an increasingly important thin film synthesis technique in areas such as sensors, microelectronics, protective coatings, and catalysis. However, new analytical approaches are needed to advance fundamental understanding of deposition reaction mechanisms. This work introduces ultrafast laser-based pump–probe picosecond acoustics analysis to characterize thickness-dependent properties of MLD films. Polyurea films are deposited on hydroxylated SiO2 substrates using 1,4-phenylene diisocyanate and a diamine reactant, either ethylenediamine (PDIC/ED polymer) or 1,6-hexanediamine (PDIC/HD), and the expected polymer structure is confirmed by Fourier transform infrared spectroscopy. During the first ∼20 nm of deposition, spectroscopic ellipsometry shows constant refractive index but decreasing growth rate before reaching steady state. X-ray reflectivity also shows approximately constant density during initial growth. However, the measured picosecond acoustics signatures demonstrate a marked increase in sound speed initially, indicating a transition in the physical film structure. The observed trends are ascribed to a transition in the kinetics of active site production and termination with increasing thickness, leading to changes in polymer and oligomer connectivity within the film. These findings provide a basis for better understanding MLD processes and reaction mechanisms that determine deposited film properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b04702</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0003-3233-4251</orcidid><orcidid>https://orcid.org/0000-0002-0048-5859</orcidid><orcidid>https://orcid.org/0000-0001-9908-7158</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-02, Vol.32 (4), p.1553-1563
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_9b04702
source ACS Publications
title Understanding Molecular Layer Deposition Growth Mechanisms in Polyurea via Picosecond Acoustics Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Molecular%20Layer%20Deposition%20Growth%20Mechanisms%20in%20Polyurea%20via%20Picosecond%20Acoustics%20Analysis&rft.jtitle=Chemistry%20of%20materials&rft.au=Nye,%20Rachel%20A&rft.date=2020-02-25&rft.volume=32&rft.issue=4&rft.spage=1553&rft.epage=1563&rft.pages=1553-1563&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b04702&rft_dat=%3Cacs_cross%3Eb825440775%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true