Locating and Controlling the Zn Content in In(Zn)P Quantum Dots
Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2020-01, Vol.32 (1), p.557-565 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 565 |
---|---|
container_issue | 1 |
container_start_page | 557 |
container_title | Chemistry of materials |
container_volume | 32 |
creator | Kirkwood, Nicholas De Backer, Annick Altantzis, Thomas Winckelmans, Naomi Longo, Alessandro Antolinez, Felipe V Rabouw, Freddy T De Trizio, Luca Geuchies, Jaco J Mulder, Jence T Renaud, Nicolas Bals, Sara Manna, Liberato Houtepen, Arjan J |
description | Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2. |
doi_str_mv | 10.1021/acs.chemmater.9b04407 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b04407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d162800563</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoWFd_gpCjHlpn0qRtTiL1a6Gggl72UtJu4nZpU0myB_-9rbt49TTMvDzDy0PIJUKCwPBGtT5pN3oYVNAukQ1wDvkRiVAwiAUAOyYRFDKPeS6yU3Lm_RYAJ7SIyG01tip09pMqu6blaIMb-37ew0bTlf09aRtoZ-nSXq3s9St92ykbdgO9H4M_JydG9V5fHOaCfDw-vJfPcfXytCzvqlhxKEKsGiaMzNBkZmrSAhcMQWZs3fAMUJjWMImca56mwuQCRGF4oVDKFJoil5guiNj_bd3ovdOm_nLdoNx3jVDPFurJQv1noT5YmDjcc3O8HXfOTi3_YX4ACiFizw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</title><source>ACS Publications</source><creator>Kirkwood, Nicholas ; De Backer, Annick ; Altantzis, Thomas ; Winckelmans, Naomi ; Longo, Alessandro ; Antolinez, Felipe V ; Rabouw, Freddy T ; De Trizio, Luca ; Geuchies, Jaco J ; Mulder, Jence T ; Renaud, Nicolas ; Bals, Sara ; Manna, Liberato ; Houtepen, Arjan J</creator><creatorcontrib>Kirkwood, Nicholas ; De Backer, Annick ; Altantzis, Thomas ; Winckelmans, Naomi ; Longo, Alessandro ; Antolinez, Felipe V ; Rabouw, Freddy T ; De Trizio, Luca ; Geuchies, Jaco J ; Mulder, Jence T ; Renaud, Nicolas ; Bals, Sara ; Manna, Liberato ; Houtepen, Arjan J</creatorcontrib><description>Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b04407</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-01, Vol.32 (1), p.557-565</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</citedby><cites>FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</cites><orcidid>0000-0003-4386-7985 ; 0000-0002-4397-1347 ; 0000-0001-8328-443X ; 0000-0002-4775-0859 ; 0000-0002-4940-7931 ; 0000-0002-1787-0112 ; 0000-0002-1514-6358 ; 0000-0002-0758-9140 ; 0000-0002-7845-7081 ; 0000-0002-4249-8017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b04407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b04407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>De Backer, Annick</creatorcontrib><creatorcontrib>Altantzis, Thomas</creatorcontrib><creatorcontrib>Winckelmans, Naomi</creatorcontrib><creatorcontrib>Longo, Alessandro</creatorcontrib><creatorcontrib>Antolinez, Felipe V</creatorcontrib><creatorcontrib>Rabouw, Freddy T</creatorcontrib><creatorcontrib>De Trizio, Luca</creatorcontrib><creatorcontrib>Geuchies, Jaco J</creatorcontrib><creatorcontrib>Mulder, Jence T</creatorcontrib><creatorcontrib>Renaud, Nicolas</creatorcontrib><creatorcontrib>Bals, Sara</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Houtepen, Arjan J</creatorcontrib><title>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoWFd_gpCjHlpn0qRtTiL1a6Gggl72UtJu4nZpU0myB_-9rbt49TTMvDzDy0PIJUKCwPBGtT5pN3oYVNAukQ1wDvkRiVAwiAUAOyYRFDKPeS6yU3Lm_RYAJ7SIyG01tip09pMqu6blaIMb-37ew0bTlf09aRtoZ-nSXq3s9St92ykbdgO9H4M_JydG9V5fHOaCfDw-vJfPcfXytCzvqlhxKEKsGiaMzNBkZmrSAhcMQWZs3fAMUJjWMImca56mwuQCRGF4oVDKFJoil5guiNj_bd3ovdOm_nLdoNx3jVDPFurJQv1noT5YmDjcc3O8HXfOTi3_YX4ACiFizw</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Kirkwood, Nicholas</creator><creator>De Backer, Annick</creator><creator>Altantzis, Thomas</creator><creator>Winckelmans, Naomi</creator><creator>Longo, Alessandro</creator><creator>Antolinez, Felipe V</creator><creator>Rabouw, Freddy T</creator><creator>De Trizio, Luca</creator><creator>Geuchies, Jaco J</creator><creator>Mulder, Jence T</creator><creator>Renaud, Nicolas</creator><creator>Bals, Sara</creator><creator>Manna, Liberato</creator><creator>Houtepen, Arjan J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4386-7985</orcidid><orcidid>https://orcid.org/0000-0002-4397-1347</orcidid><orcidid>https://orcid.org/0000-0001-8328-443X</orcidid><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0002-4940-7931</orcidid><orcidid>https://orcid.org/0000-0002-1787-0112</orcidid><orcidid>https://orcid.org/0000-0002-1514-6358</orcidid><orcidid>https://orcid.org/0000-0002-0758-9140</orcidid><orcidid>https://orcid.org/0000-0002-7845-7081</orcidid><orcidid>https://orcid.org/0000-0002-4249-8017</orcidid></search><sort><creationdate>20200114</creationdate><title>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</title><author>Kirkwood, Nicholas ; De Backer, Annick ; Altantzis, Thomas ; Winckelmans, Naomi ; Longo, Alessandro ; Antolinez, Felipe V ; Rabouw, Freddy T ; De Trizio, Luca ; Geuchies, Jaco J ; Mulder, Jence T ; Renaud, Nicolas ; Bals, Sara ; Manna, Liberato ; Houtepen, Arjan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>De Backer, Annick</creatorcontrib><creatorcontrib>Altantzis, Thomas</creatorcontrib><creatorcontrib>Winckelmans, Naomi</creatorcontrib><creatorcontrib>Longo, Alessandro</creatorcontrib><creatorcontrib>Antolinez, Felipe V</creatorcontrib><creatorcontrib>Rabouw, Freddy T</creatorcontrib><creatorcontrib>De Trizio, Luca</creatorcontrib><creatorcontrib>Geuchies, Jaco J</creatorcontrib><creatorcontrib>Mulder, Jence T</creatorcontrib><creatorcontrib>Renaud, Nicolas</creatorcontrib><creatorcontrib>Bals, Sara</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Houtepen, Arjan J</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkwood, Nicholas</au><au>De Backer, Annick</au><au>Altantzis, Thomas</au><au>Winckelmans, Naomi</au><au>Longo, Alessandro</au><au>Antolinez, Felipe V</au><au>Rabouw, Freddy T</au><au>De Trizio, Luca</au><au>Geuchies, Jaco J</au><au>Mulder, Jence T</au><au>Renaud, Nicolas</au><au>Bals, Sara</au><au>Manna, Liberato</au><au>Houtepen, Arjan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>32</volume><issue>1</issue><spage>557</spage><epage>565</epage><pages>557-565</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b04407</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4386-7985</orcidid><orcidid>https://orcid.org/0000-0002-4397-1347</orcidid><orcidid>https://orcid.org/0000-0001-8328-443X</orcidid><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0002-4940-7931</orcidid><orcidid>https://orcid.org/0000-0002-1787-0112</orcidid><orcidid>https://orcid.org/0000-0002-1514-6358</orcidid><orcidid>https://orcid.org/0000-0002-0758-9140</orcidid><orcidid>https://orcid.org/0000-0002-7845-7081</orcidid><orcidid>https://orcid.org/0000-0002-4249-8017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2020-01, Vol.32 (1), p.557-565 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_9b04407 |
source | ACS Publications |
title | Locating and Controlling the Zn Content in In(Zn)P Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locating%20and%20Controlling%20the%20Zn%20Content%20in%20In(Zn)P%20Quantum%20Dots&rft.jtitle=Chemistry%20of%20materials&rft.au=Kirkwood,%20Nicholas&rft.date=2020-01-14&rft.volume=32&rft.issue=1&rft.spage=557&rft.epage=565&rft.pages=557-565&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b04407&rft_dat=%3Cacs_cross%3Ed162800563%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |