Locating and Controlling the Zn Content in In(Zn)P Quantum Dots

Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In­(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-01, Vol.32 (1), p.557-565
Hauptverfasser: Kirkwood, Nicholas, De Backer, Annick, Altantzis, Thomas, Winckelmans, Naomi, Longo, Alessandro, Antolinez, Felipe V, Rabouw, Freddy T, De Trizio, Luca, Geuchies, Jaco J, Mulder, Jence T, Renaud, Nicolas, Bals, Sara, Manna, Liberato, Houtepen, Arjan J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 565
container_issue 1
container_start_page 557
container_title Chemistry of materials
container_volume 32
creator Kirkwood, Nicholas
De Backer, Annick
Altantzis, Thomas
Winckelmans, Naomi
Longo, Alessandro
Antolinez, Felipe V
Rabouw, Freddy T
De Trizio, Luca
Geuchies, Jaco J
Mulder, Jence T
Renaud, Nicolas
Bals, Sara
Manna, Liberato
Houtepen, Arjan J
description Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In­(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In­(Zn)­P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In­(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.
doi_str_mv 10.1021/acs.chemmater.9b04407
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b04407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d162800563</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoWFd_gpCjHlpn0qRtTiL1a6Gggl72UtJu4nZpU0myB_-9rbt49TTMvDzDy0PIJUKCwPBGtT5pN3oYVNAukQ1wDvkRiVAwiAUAOyYRFDKPeS6yU3Lm_RYAJ7SIyG01tip09pMqu6blaIMb-37ew0bTlf09aRtoZ-nSXq3s9St92ykbdgO9H4M_JydG9V5fHOaCfDw-vJfPcfXytCzvqlhxKEKsGiaMzNBkZmrSAhcMQWZs3fAMUJjWMImca56mwuQCRGF4oVDKFJoil5guiNj_bd3ovdOm_nLdoNx3jVDPFurJQv1noT5YmDjcc3O8HXfOTi3_YX4ACiFizw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</title><source>ACS Publications</source><creator>Kirkwood, Nicholas ; De Backer, Annick ; Altantzis, Thomas ; Winckelmans, Naomi ; Longo, Alessandro ; Antolinez, Felipe V ; Rabouw, Freddy T ; De Trizio, Luca ; Geuchies, Jaco J ; Mulder, Jence T ; Renaud, Nicolas ; Bals, Sara ; Manna, Liberato ; Houtepen, Arjan J</creator><creatorcontrib>Kirkwood, Nicholas ; De Backer, Annick ; Altantzis, Thomas ; Winckelmans, Naomi ; Longo, Alessandro ; Antolinez, Felipe V ; Rabouw, Freddy T ; De Trizio, Luca ; Geuchies, Jaco J ; Mulder, Jence T ; Renaud, Nicolas ; Bals, Sara ; Manna, Liberato ; Houtepen, Arjan J</creatorcontrib><description>Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In­(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In­(Zn)­P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In­(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b04407</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-01, Vol.32 (1), p.557-565</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</citedby><cites>FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</cites><orcidid>0000-0003-4386-7985 ; 0000-0002-4397-1347 ; 0000-0001-8328-443X ; 0000-0002-4775-0859 ; 0000-0002-4940-7931 ; 0000-0002-1787-0112 ; 0000-0002-1514-6358 ; 0000-0002-0758-9140 ; 0000-0002-7845-7081 ; 0000-0002-4249-8017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b04407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b04407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>De Backer, Annick</creatorcontrib><creatorcontrib>Altantzis, Thomas</creatorcontrib><creatorcontrib>Winckelmans, Naomi</creatorcontrib><creatorcontrib>Longo, Alessandro</creatorcontrib><creatorcontrib>Antolinez, Felipe V</creatorcontrib><creatorcontrib>Rabouw, Freddy T</creatorcontrib><creatorcontrib>De Trizio, Luca</creatorcontrib><creatorcontrib>Geuchies, Jaco J</creatorcontrib><creatorcontrib>Mulder, Jence T</creatorcontrib><creatorcontrib>Renaud, Nicolas</creatorcontrib><creatorcontrib>Bals, Sara</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Houtepen, Arjan J</creatorcontrib><title>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In­(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In­(Zn)­P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In­(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoWFd_gpCjHlpn0qRtTiL1a6Gggl72UtJu4nZpU0myB_-9rbt49TTMvDzDy0PIJUKCwPBGtT5pN3oYVNAukQ1wDvkRiVAwiAUAOyYRFDKPeS6yU3Lm_RYAJ7SIyG01tip09pMqu6blaIMb-37ew0bTlf09aRtoZ-nSXq3s9St92ykbdgO9H4M_JydG9V5fHOaCfDw-vJfPcfXytCzvqlhxKEKsGiaMzNBkZmrSAhcMQWZs3fAMUJjWMImca56mwuQCRGF4oVDKFJoil5guiNj_bd3ovdOm_nLdoNx3jVDPFurJQv1noT5YmDjcc3O8HXfOTi3_YX4ACiFizw</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Kirkwood, Nicholas</creator><creator>De Backer, Annick</creator><creator>Altantzis, Thomas</creator><creator>Winckelmans, Naomi</creator><creator>Longo, Alessandro</creator><creator>Antolinez, Felipe V</creator><creator>Rabouw, Freddy T</creator><creator>De Trizio, Luca</creator><creator>Geuchies, Jaco J</creator><creator>Mulder, Jence T</creator><creator>Renaud, Nicolas</creator><creator>Bals, Sara</creator><creator>Manna, Liberato</creator><creator>Houtepen, Arjan J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4386-7985</orcidid><orcidid>https://orcid.org/0000-0002-4397-1347</orcidid><orcidid>https://orcid.org/0000-0001-8328-443X</orcidid><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0002-4940-7931</orcidid><orcidid>https://orcid.org/0000-0002-1787-0112</orcidid><orcidid>https://orcid.org/0000-0002-1514-6358</orcidid><orcidid>https://orcid.org/0000-0002-0758-9140</orcidid><orcidid>https://orcid.org/0000-0002-7845-7081</orcidid><orcidid>https://orcid.org/0000-0002-4249-8017</orcidid></search><sort><creationdate>20200114</creationdate><title>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</title><author>Kirkwood, Nicholas ; De Backer, Annick ; Altantzis, Thomas ; Winckelmans, Naomi ; Longo, Alessandro ; Antolinez, Felipe V ; Rabouw, Freddy T ; De Trizio, Luca ; Geuchies, Jaco J ; Mulder, Jence T ; Renaud, Nicolas ; Bals, Sara ; Manna, Liberato ; Houtepen, Arjan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-ab25f961f6f089c045210962db46015fcf29144e4335f75058f48a19930b87913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>De Backer, Annick</creatorcontrib><creatorcontrib>Altantzis, Thomas</creatorcontrib><creatorcontrib>Winckelmans, Naomi</creatorcontrib><creatorcontrib>Longo, Alessandro</creatorcontrib><creatorcontrib>Antolinez, Felipe V</creatorcontrib><creatorcontrib>Rabouw, Freddy T</creatorcontrib><creatorcontrib>De Trizio, Luca</creatorcontrib><creatorcontrib>Geuchies, Jaco J</creatorcontrib><creatorcontrib>Mulder, Jence T</creatorcontrib><creatorcontrib>Renaud, Nicolas</creatorcontrib><creatorcontrib>Bals, Sara</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Houtepen, Arjan J</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkwood, Nicholas</au><au>De Backer, Annick</au><au>Altantzis, Thomas</au><au>Winckelmans, Naomi</au><au>Longo, Alessandro</au><au>Antolinez, Felipe V</au><au>Rabouw, Freddy T</au><au>De Trizio, Luca</au><au>Geuchies, Jaco J</au><au>Mulder, Jence T</au><au>Renaud, Nicolas</au><au>Bals, Sara</au><au>Manna, Liberato</au><au>Houtepen, Arjan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locating and Controlling the Zn Content in In(Zn)P Quantum Dots</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>32</volume><issue>1</issue><spage>557</spage><epage>565</epage><pages>557-565</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In­(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In­(Zn)­P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In­(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b04407</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4386-7985</orcidid><orcidid>https://orcid.org/0000-0002-4397-1347</orcidid><orcidid>https://orcid.org/0000-0001-8328-443X</orcidid><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0002-4940-7931</orcidid><orcidid>https://orcid.org/0000-0002-1787-0112</orcidid><orcidid>https://orcid.org/0000-0002-1514-6358</orcidid><orcidid>https://orcid.org/0000-0002-0758-9140</orcidid><orcidid>https://orcid.org/0000-0002-7845-7081</orcidid><orcidid>https://orcid.org/0000-0002-4249-8017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-01, Vol.32 (1), p.557-565
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_9b04407
source ACS Publications
title Locating and Controlling the Zn Content in In(Zn)P Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locating%20and%20Controlling%20the%20Zn%20Content%20in%20In(Zn)P%20Quantum%20Dots&rft.jtitle=Chemistry%20of%20materials&rft.au=Kirkwood,%20Nicholas&rft.date=2020-01-14&rft.volume=32&rft.issue=1&rft.spage=557&rft.epage=565&rft.pages=557-565&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b04407&rft_dat=%3Cacs_cross%3Ed162800563%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true