Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments

Activating room-temperature phosphorescence (RTP) emission in aqueous environments is a challenging feat because of the releasing of nonradiative decay pathways. Here, a design strategy was presented that effectively promotes the presence of RTP of carbon dots (CDs) in aqueous solutions by utilizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-10, Vol.31 (19), p.7979-7986
Hauptverfasser: Gao, Yifang, Zhang, Huilin, Jiao, Yuan, Lu, Wenjing, Liu, Yang, Han, Hui, Gong, Xiaojuan, Shuang, Shaomin, Dong, Chuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7986
container_issue 19
container_start_page 7979
container_title Chemistry of materials
container_volume 31
creator Gao, Yifang
Zhang, Huilin
Jiao, Yuan
Lu, Wenjing
Liu, Yang
Han, Hui
Gong, Xiaojuan
Shuang, Shaomin
Dong, Chuan
description Activating room-temperature phosphorescence (RTP) emission in aqueous environments is a challenging feat because of the releasing of nonradiative decay pathways. Here, a design strategy was presented that effectively promotes the presence of RTP of carbon dots (CDs) in aqueous solutions by utilizing CDs and melamine to construct hydrogen-bonded networks to form a polymer (M-CDs). The obtained M-CDs not only enjoy an ultralong phosphorescence lifetime of 664 ms, but also relatively high quantum yield of 25% in an aqueous environment at 468 nm excitation. This is also a rare example of achieving RTP of CDs with a solid state in an aqueous environment. Further investigations reveal that the hydrogen-bonded networks are critical to the implementation of RTP in an aqueous environment. The existence of covalent bonds in CDs and melamine further stabilizes the hydrogen-bond skeleton and triplet state. Furthermore, the bound water formed inside the M-CDs also plays an indispensable role in stabilizing the RTP in the aqueous solution. Given the feature, the M-CDs are used to effectively implement double data encryption and decryption. In addition, this strategy is universal for most phosphorescence materials. This result will pave the way toward expanding RTP materials and their applications in aqueous environments.
doi_str_mv 10.1021/acs.chemmater.9b02176
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b02176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b104700814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-b33d9ec6efc8eb39b8051314318870f54ad81b39632f8144bc831e2e2cbab6b23</originalsourceid><addsrcrecordid>eNqFkNtKAzEURYMoWKufIOQHpuYymck8llovUFC0PockPdNOcZKaZAr9e1NafPXpwN6szWEhdE_JhBJGH7SNE7uBvtcJwqQxOaurCzSigpFCEMIu0YjIpi7KWlTX6CbGLSE0o3KE1GcKGVsfcOsDntrU7XXq3Bp_eN8XS-h3kPshAH7f-Ljb-ADRgrOAfYtnOhjv8KNPEXcOT38G8EPEc7fvgnc9uBRv0VWrvyPcne8YfT3Nl7OXYvH2_DqbLgrNGpEKw_mqAVtBayUY3hhJBOW05FTKmrSi1CtJc15x1kpalsZKToEBs0abyjA-RuK0a4OPMUCrdqHrdTgoStTRksqW1J8ldbaUOXrijvXWD8HlL_9hfgHkFXHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments</title><source>American Chemical Society Journals</source><creator>Gao, Yifang ; Zhang, Huilin ; Jiao, Yuan ; Lu, Wenjing ; Liu, Yang ; Han, Hui ; Gong, Xiaojuan ; Shuang, Shaomin ; Dong, Chuan</creator><creatorcontrib>Gao, Yifang ; Zhang, Huilin ; Jiao, Yuan ; Lu, Wenjing ; Liu, Yang ; Han, Hui ; Gong, Xiaojuan ; Shuang, Shaomin ; Dong, Chuan</creatorcontrib><description>Activating room-temperature phosphorescence (RTP) emission in aqueous environments is a challenging feat because of the releasing of nonradiative decay pathways. Here, a design strategy was presented that effectively promotes the presence of RTP of carbon dots (CDs) in aqueous solutions by utilizing CDs and melamine to construct hydrogen-bonded networks to form a polymer (M-CDs). The obtained M-CDs not only enjoy an ultralong phosphorescence lifetime of 664 ms, but also relatively high quantum yield of 25% in an aqueous environment at 468 nm excitation. This is also a rare example of achieving RTP of CDs with a solid state in an aqueous environment. Further investigations reveal that the hydrogen-bonded networks are critical to the implementation of RTP in an aqueous environment. The existence of covalent bonds in CDs and melamine further stabilizes the hydrogen-bond skeleton and triplet state. Furthermore, the bound water formed inside the M-CDs also plays an indispensable role in stabilizing the RTP in the aqueous solution. Given the feature, the M-CDs are used to effectively implement double data encryption and decryption. In addition, this strategy is universal for most phosphorescence materials. This result will pave the way toward expanding RTP materials and their applications in aqueous environments.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b02176</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2019-10, Vol.31 (19), p.7979-7986</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-b33d9ec6efc8eb39b8051314318870f54ad81b39632f8144bc831e2e2cbab6b23</citedby><cites>FETCH-LOGICAL-a295t-b33d9ec6efc8eb39b8051314318870f54ad81b39632f8144bc831e2e2cbab6b23</cites><orcidid>0000-0002-1827-8794 ; 0000-0002-2152-2639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b02176$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b02176$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Gao, Yifang</creatorcontrib><creatorcontrib>Zhang, Huilin</creatorcontrib><creatorcontrib>Jiao, Yuan</creatorcontrib><creatorcontrib>Lu, Wenjing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Han, Hui</creatorcontrib><creatorcontrib>Gong, Xiaojuan</creatorcontrib><creatorcontrib>Shuang, Shaomin</creatorcontrib><creatorcontrib>Dong, Chuan</creatorcontrib><title>Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Activating room-temperature phosphorescence (RTP) emission in aqueous environments is a challenging feat because of the releasing of nonradiative decay pathways. Here, a design strategy was presented that effectively promotes the presence of RTP of carbon dots (CDs) in aqueous solutions by utilizing CDs and melamine to construct hydrogen-bonded networks to form a polymer (M-CDs). The obtained M-CDs not only enjoy an ultralong phosphorescence lifetime of 664 ms, but also relatively high quantum yield of 25% in an aqueous environment at 468 nm excitation. This is also a rare example of achieving RTP of CDs with a solid state in an aqueous environment. Further investigations reveal that the hydrogen-bonded networks are critical to the implementation of RTP in an aqueous environment. The existence of covalent bonds in CDs and melamine further stabilizes the hydrogen-bond skeleton and triplet state. Furthermore, the bound water formed inside the M-CDs also plays an indispensable role in stabilizing the RTP in the aqueous solution. Given the feature, the M-CDs are used to effectively implement double data encryption and decryption. In addition, this strategy is universal for most phosphorescence materials. This result will pave the way toward expanding RTP materials and their applications in aqueous environments.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKAzEURYMoWKufIOQHpuYymck8llovUFC0PockPdNOcZKaZAr9e1NafPXpwN6szWEhdE_JhBJGH7SNE7uBvtcJwqQxOaurCzSigpFCEMIu0YjIpi7KWlTX6CbGLSE0o3KE1GcKGVsfcOsDntrU7XXq3Bp_eN8XS-h3kPshAH7f-Ljb-ADRgrOAfYtnOhjv8KNPEXcOT38G8EPEc7fvgnc9uBRv0VWrvyPcne8YfT3Nl7OXYvH2_DqbLgrNGpEKw_mqAVtBayUY3hhJBOW05FTKmrSi1CtJc15x1kpalsZKToEBs0abyjA-RuK0a4OPMUCrdqHrdTgoStTRksqW1J8ldbaUOXrijvXWD8HlL_9hfgHkFXHc</recordid><startdate>20191008</startdate><enddate>20191008</enddate><creator>Gao, Yifang</creator><creator>Zhang, Huilin</creator><creator>Jiao, Yuan</creator><creator>Lu, Wenjing</creator><creator>Liu, Yang</creator><creator>Han, Hui</creator><creator>Gong, Xiaojuan</creator><creator>Shuang, Shaomin</creator><creator>Dong, Chuan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1827-8794</orcidid><orcidid>https://orcid.org/0000-0002-2152-2639</orcidid></search><sort><creationdate>20191008</creationdate><title>Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments</title><author>Gao, Yifang ; Zhang, Huilin ; Jiao, Yuan ; Lu, Wenjing ; Liu, Yang ; Han, Hui ; Gong, Xiaojuan ; Shuang, Shaomin ; Dong, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-b33d9ec6efc8eb39b8051314318870f54ad81b39632f8144bc831e2e2cbab6b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yifang</creatorcontrib><creatorcontrib>Zhang, Huilin</creatorcontrib><creatorcontrib>Jiao, Yuan</creatorcontrib><creatorcontrib>Lu, Wenjing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Han, Hui</creatorcontrib><creatorcontrib>Gong, Xiaojuan</creatorcontrib><creatorcontrib>Shuang, Shaomin</creatorcontrib><creatorcontrib>Dong, Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yifang</au><au>Zhang, Huilin</au><au>Jiao, Yuan</au><au>Lu, Wenjing</au><au>Liu, Yang</au><au>Han, Hui</au><au>Gong, Xiaojuan</au><au>Shuang, Shaomin</au><au>Dong, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-10-08</date><risdate>2019</risdate><volume>31</volume><issue>19</issue><spage>7979</spage><epage>7986</epage><pages>7979-7986</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Activating room-temperature phosphorescence (RTP) emission in aqueous environments is a challenging feat because of the releasing of nonradiative decay pathways. Here, a design strategy was presented that effectively promotes the presence of RTP of carbon dots (CDs) in aqueous solutions by utilizing CDs and melamine to construct hydrogen-bonded networks to form a polymer (M-CDs). The obtained M-CDs not only enjoy an ultralong phosphorescence lifetime of 664 ms, but also relatively high quantum yield of 25% in an aqueous environment at 468 nm excitation. This is also a rare example of achieving RTP of CDs with a solid state in an aqueous environment. Further investigations reveal that the hydrogen-bonded networks are critical to the implementation of RTP in an aqueous environment. The existence of covalent bonds in CDs and melamine further stabilizes the hydrogen-bond skeleton and triplet state. Furthermore, the bound water formed inside the M-CDs also plays an indispensable role in stabilizing the RTP in the aqueous solution. Given the feature, the M-CDs are used to effectively implement double data encryption and decryption. In addition, this strategy is universal for most phosphorescence materials. This result will pave the way toward expanding RTP materials and their applications in aqueous environments.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b02176</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1827-8794</orcidid><orcidid>https://orcid.org/0000-0002-2152-2639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-10, Vol.31 (19), p.7979-7986
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_9b02176
source American Chemical Society Journals
title Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategy%20for%20Activating%20Room-Temperature%20Phosphorescence%20of%20Carbon%20Dots%20in%20Aqueous%20Environments&rft.jtitle=Chemistry%20of%20materials&rft.au=Gao,%20Yifang&rft.date=2019-10-08&rft.volume=31&rft.issue=19&rft.spage=7979&rft.epage=7986&rft.pages=7979-7986&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b02176&rft_dat=%3Cacs_cross%3Eb104700814%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true