Gas-Phase Synthesis of Trimetallic Nanoparticles

To this day, engineering nanoalloys beyond bimetallic compositions has scarcely been within the scope of physical deposition methods due to the complex, nonequilibrium processes they entail. Here, we report a gas-phase synthesis strategy for the growth of multimetallic nanoparticles: magnetron-sputt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-03, Vol.31 (6), p.2151-2163
Hauptverfasser: Mattei, Jean-Gabriel, Grammatikopoulos, Panagiotis, Zhao, Junlei, Singh, Vidyadhar, Vernieres, Jerome, Steinhauer, Stephan, Porkovich, Alexander, Danielson, Eric, Nordlund, Kai, Djurabekova, Flyura, Sowwan, Mukhles
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2163
container_issue 6
container_start_page 2151
container_title Chemistry of materials
container_volume 31
creator Mattei, Jean-Gabriel
Grammatikopoulos, Panagiotis
Zhao, Junlei
Singh, Vidyadhar
Vernieres, Jerome
Steinhauer, Stephan
Porkovich, Alexander
Danielson, Eric
Nordlund, Kai
Djurabekova, Flyura
Sowwan, Mukhles
description To this day, engineering nanoalloys beyond bimetallic compositions has scarcely been within the scope of physical deposition methods due to the complex, nonequilibrium processes they entail. Here, we report a gas-phase synthesis strategy for the growth of multimetallic nanoparticles: magnetron-sputtering inert-gas condensation from neighboring monoelemental targets provides the necessary compositional flexibility, whereas in-depth atomistic computer simulations elucidate the fast kinetics of nucleation and growth that determines the resultant structures. We fabricated consistently trimetallic Au–Pt–Pd nanoparticles, a system of major importance for heterogeneous catalysis applications. Using high-resolution transmission electron microscopy, we established their physical and chemical ordering: Au/Pt-rich core@Pd-shell atomic arrangements were identified for particles containing substantial amounts of all elements. Decomposing the growth process into basic steps by molecular dynamics simulations, we identified a fundamental difference between Au/Pt and Pd growth dynamics: Au/Pt electronic arrangements favor the formation of dimer nuclei instead of larger-size clusters, thus significantly slowing down their growth rate. Consequently, larger Pd particles formed considerably faster and incorporated small Au and Pt clusters by means of in-flight decoration and coalescence. A broad range of icosahedral, truncated-octahedral, and spheroidal face-centered cubic trimetallic nanoparticles were reproduced in simulations, in good agreement with experimental particles. Comparing them with their expected equilibrium structures obtained by Monte Carlo simulations, we identified the particles as metastable, due to out-of-equilibrium growth conditions. We aspire that our in-depth study will constitute a significant advance toward establishing gas-phase aggregation as a standard method for the fabrication of complex nanoparticles by design.
doi_str_mv 10.1021/acs.chemmater.9b00129
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b00129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a607497301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a452t-df6e2b4810f80495b3f8588da55f77e6fe076113702e3e7573f16a79d72f6a033</originalsourceid><addsrcrecordid>eNqFj81Kw0AUhQdRsFYfQcgLJN6ZyfxkKUVroahgXQ83yR2Skp8yExd9e1Na3Lo6i3u-y_kYe-SQcRD8CauYVQ31PU4UsqIE4KK4YguuBKQKQFyzBdjCpLlR-pbdxbifKzNqFwzWGNPPBiMlX8dhaii2MRl9sgttTxN2XVsl7ziMBwxTW3UU79mNxy7SwyWX7Pv1Zbd6S7cf683qeZtirsSU1l6TKHPLwVvIC1VKb5W1NSrljSHtCYzmXBoQJMkoIz3XaIraCK8RpFwydf5bhTHGQN4d5kkYjo6DO2m7Wdv9abuL9szxM3c678efMMwr_2F-AchZXzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas-Phase Synthesis of Trimetallic Nanoparticles</title><source>ACS Publications</source><creator>Mattei, Jean-Gabriel ; Grammatikopoulos, Panagiotis ; Zhao, Junlei ; Singh, Vidyadhar ; Vernieres, Jerome ; Steinhauer, Stephan ; Porkovich, Alexander ; Danielson, Eric ; Nordlund, Kai ; Djurabekova, Flyura ; Sowwan, Mukhles</creator><creatorcontrib>Mattei, Jean-Gabriel ; Grammatikopoulos, Panagiotis ; Zhao, Junlei ; Singh, Vidyadhar ; Vernieres, Jerome ; Steinhauer, Stephan ; Porkovich, Alexander ; Danielson, Eric ; Nordlund, Kai ; Djurabekova, Flyura ; Sowwan, Mukhles</creatorcontrib><description>To this day, engineering nanoalloys beyond bimetallic compositions has scarcely been within the scope of physical deposition methods due to the complex, nonequilibrium processes they entail. Here, we report a gas-phase synthesis strategy for the growth of multimetallic nanoparticles: magnetron-sputtering inert-gas condensation from neighboring monoelemental targets provides the necessary compositional flexibility, whereas in-depth atomistic computer simulations elucidate the fast kinetics of nucleation and growth that determines the resultant structures. We fabricated consistently trimetallic Au–Pt–Pd nanoparticles, a system of major importance for heterogeneous catalysis applications. Using high-resolution transmission electron microscopy, we established their physical and chemical ordering: Au/Pt-rich core@Pd-shell atomic arrangements were identified for particles containing substantial amounts of all elements. Decomposing the growth process into basic steps by molecular dynamics simulations, we identified a fundamental difference between Au/Pt and Pd growth dynamics: Au/Pt electronic arrangements favor the formation of dimer nuclei instead of larger-size clusters, thus significantly slowing down their growth rate. Consequently, larger Pd particles formed considerably faster and incorporated small Au and Pt clusters by means of in-flight decoration and coalescence. A broad range of icosahedral, truncated-octahedral, and spheroidal face-centered cubic trimetallic nanoparticles were reproduced in simulations, in good agreement with experimental particles. Comparing them with their expected equilibrium structures obtained by Monte Carlo simulations, we identified the particles as metastable, due to out-of-equilibrium growth conditions. We aspire that our in-depth study will constitute a significant advance toward establishing gas-phase aggregation as a standard method for the fabrication of complex nanoparticles by design.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b00129</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2019-03, Vol.31 (6), p.2151-2163</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a452t-df6e2b4810f80495b3f8588da55f77e6fe076113702e3e7573f16a79d72f6a033</citedby><cites>FETCH-LOGICAL-a452t-df6e2b4810f80495b3f8588da55f77e6fe076113702e3e7573f16a79d72f6a033</cites><orcidid>0000-0001-6875-6849 ; 0000-0001-8164-4534 ; 0000-0002-0211-2124 ; 0000-0002-0057-6339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b00129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b00129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Mattei, Jean-Gabriel</creatorcontrib><creatorcontrib>Grammatikopoulos, Panagiotis</creatorcontrib><creatorcontrib>Zhao, Junlei</creatorcontrib><creatorcontrib>Singh, Vidyadhar</creatorcontrib><creatorcontrib>Vernieres, Jerome</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Porkovich, Alexander</creatorcontrib><creatorcontrib>Danielson, Eric</creatorcontrib><creatorcontrib>Nordlund, Kai</creatorcontrib><creatorcontrib>Djurabekova, Flyura</creatorcontrib><creatorcontrib>Sowwan, Mukhles</creatorcontrib><title>Gas-Phase Synthesis of Trimetallic Nanoparticles</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>To this day, engineering nanoalloys beyond bimetallic compositions has scarcely been within the scope of physical deposition methods due to the complex, nonequilibrium processes they entail. Here, we report a gas-phase synthesis strategy for the growth of multimetallic nanoparticles: magnetron-sputtering inert-gas condensation from neighboring monoelemental targets provides the necessary compositional flexibility, whereas in-depth atomistic computer simulations elucidate the fast kinetics of nucleation and growth that determines the resultant structures. We fabricated consistently trimetallic Au–Pt–Pd nanoparticles, a system of major importance for heterogeneous catalysis applications. Using high-resolution transmission electron microscopy, we established their physical and chemical ordering: Au/Pt-rich core@Pd-shell atomic arrangements were identified for particles containing substantial amounts of all elements. Decomposing the growth process into basic steps by molecular dynamics simulations, we identified a fundamental difference between Au/Pt and Pd growth dynamics: Au/Pt electronic arrangements favor the formation of dimer nuclei instead of larger-size clusters, thus significantly slowing down their growth rate. Consequently, larger Pd particles formed considerably faster and incorporated small Au and Pt clusters by means of in-flight decoration and coalescence. A broad range of icosahedral, truncated-octahedral, and spheroidal face-centered cubic trimetallic nanoparticles were reproduced in simulations, in good agreement with experimental particles. Comparing them with their expected equilibrium structures obtained by Monte Carlo simulations, we identified the particles as metastable, due to out-of-equilibrium growth conditions. We aspire that our in-depth study will constitute a significant advance toward establishing gas-phase aggregation as a standard method for the fabrication of complex nanoparticles by design.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj81Kw0AUhQdRsFYfQcgLJN6ZyfxkKUVroahgXQ83yR2Skp8yExd9e1Na3Lo6i3u-y_kYe-SQcRD8CauYVQ31PU4UsqIE4KK4YguuBKQKQFyzBdjCpLlR-pbdxbifKzNqFwzWGNPPBiMlX8dhaii2MRl9sgttTxN2XVsl7ziMBwxTW3UU79mNxy7SwyWX7Pv1Zbd6S7cf683qeZtirsSU1l6TKHPLwVvIC1VKb5W1NSrljSHtCYzmXBoQJMkoIz3XaIraCK8RpFwydf5bhTHGQN4d5kkYjo6DO2m7Wdv9abuL9szxM3c678efMMwr_2F-AchZXzk</recordid><startdate>20190326</startdate><enddate>20190326</enddate><creator>Mattei, Jean-Gabriel</creator><creator>Grammatikopoulos, Panagiotis</creator><creator>Zhao, Junlei</creator><creator>Singh, Vidyadhar</creator><creator>Vernieres, Jerome</creator><creator>Steinhauer, Stephan</creator><creator>Porkovich, Alexander</creator><creator>Danielson, Eric</creator><creator>Nordlund, Kai</creator><creator>Djurabekova, Flyura</creator><creator>Sowwan, Mukhles</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6875-6849</orcidid><orcidid>https://orcid.org/0000-0001-8164-4534</orcidid><orcidid>https://orcid.org/0000-0002-0211-2124</orcidid><orcidid>https://orcid.org/0000-0002-0057-6339</orcidid></search><sort><creationdate>20190326</creationdate><title>Gas-Phase Synthesis of Trimetallic Nanoparticles</title><author>Mattei, Jean-Gabriel ; Grammatikopoulos, Panagiotis ; Zhao, Junlei ; Singh, Vidyadhar ; Vernieres, Jerome ; Steinhauer, Stephan ; Porkovich, Alexander ; Danielson, Eric ; Nordlund, Kai ; Djurabekova, Flyura ; Sowwan, Mukhles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a452t-df6e2b4810f80495b3f8588da55f77e6fe076113702e3e7573f16a79d72f6a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattei, Jean-Gabriel</creatorcontrib><creatorcontrib>Grammatikopoulos, Panagiotis</creatorcontrib><creatorcontrib>Zhao, Junlei</creatorcontrib><creatorcontrib>Singh, Vidyadhar</creatorcontrib><creatorcontrib>Vernieres, Jerome</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Porkovich, Alexander</creatorcontrib><creatorcontrib>Danielson, Eric</creatorcontrib><creatorcontrib>Nordlund, Kai</creatorcontrib><creatorcontrib>Djurabekova, Flyura</creatorcontrib><creatorcontrib>Sowwan, Mukhles</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattei, Jean-Gabriel</au><au>Grammatikopoulos, Panagiotis</au><au>Zhao, Junlei</au><au>Singh, Vidyadhar</au><au>Vernieres, Jerome</au><au>Steinhauer, Stephan</au><au>Porkovich, Alexander</au><au>Danielson, Eric</au><au>Nordlund, Kai</au><au>Djurabekova, Flyura</au><au>Sowwan, Mukhles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-Phase Synthesis of Trimetallic Nanoparticles</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-03-26</date><risdate>2019</risdate><volume>31</volume><issue>6</issue><spage>2151</spage><epage>2163</epage><pages>2151-2163</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>To this day, engineering nanoalloys beyond bimetallic compositions has scarcely been within the scope of physical deposition methods due to the complex, nonequilibrium processes they entail. Here, we report a gas-phase synthesis strategy for the growth of multimetallic nanoparticles: magnetron-sputtering inert-gas condensation from neighboring monoelemental targets provides the necessary compositional flexibility, whereas in-depth atomistic computer simulations elucidate the fast kinetics of nucleation and growth that determines the resultant structures. We fabricated consistently trimetallic Au–Pt–Pd nanoparticles, a system of major importance for heterogeneous catalysis applications. Using high-resolution transmission electron microscopy, we established their physical and chemical ordering: Au/Pt-rich core@Pd-shell atomic arrangements were identified for particles containing substantial amounts of all elements. Decomposing the growth process into basic steps by molecular dynamics simulations, we identified a fundamental difference between Au/Pt and Pd growth dynamics: Au/Pt electronic arrangements favor the formation of dimer nuclei instead of larger-size clusters, thus significantly slowing down their growth rate. Consequently, larger Pd particles formed considerably faster and incorporated small Au and Pt clusters by means of in-flight decoration and coalescence. A broad range of icosahedral, truncated-octahedral, and spheroidal face-centered cubic trimetallic nanoparticles were reproduced in simulations, in good agreement with experimental particles. Comparing them with their expected equilibrium structures obtained by Monte Carlo simulations, we identified the particles as metastable, due to out-of-equilibrium growth conditions. We aspire that our in-depth study will constitute a significant advance toward establishing gas-phase aggregation as a standard method for the fabrication of complex nanoparticles by design.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b00129</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6875-6849</orcidid><orcidid>https://orcid.org/0000-0001-8164-4534</orcidid><orcidid>https://orcid.org/0000-0002-0211-2124</orcidid><orcidid>https://orcid.org/0000-0002-0057-6339</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-03, Vol.31 (6), p.2151-2163
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_9b00129
source ACS Publications
title Gas-Phase Synthesis of Trimetallic Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-Phase%20Synthesis%20of%20Trimetallic%20Nanoparticles&rft.jtitle=Chemistry%20of%20materials&rft.au=Mattei,%20Jean-Gabriel&rft.date=2019-03-26&rft.volume=31&rft.issue=6&rft.spage=2151&rft.epage=2163&rft.pages=2151-2163&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b00129&rft_dat=%3Cacs_cross%3Ea607497301%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true