Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets

Machine learning (ML) from materials databases can accelerate the design and discovery of new materials through the development of accurate, computationally inexpensive models to predict materials properties. These models in turn enable rapid screening of large materials search space. However, mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-01, Vol.31 (2), p.314-321
Hauptverfasser: Kumar, Narendra, Rajagopalan, Padmini, Pankajakshan, Praveen, Bhattacharyya, Arnab, Sanyal, Suchismita, Balachandran, Janakiraman, Waghmare, Umesh V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 2
container_start_page 314
container_title Chemistry of materials
container_volume 31
creator Kumar, Narendra
Rajagopalan, Padmini
Pankajakshan, Praveen
Bhattacharyya, Arnab
Sanyal, Suchismita
Balachandran, Janakiraman
Waghmare, Umesh V
description Machine learning (ML) from materials databases can accelerate the design and discovery of new materials through the development of accurate, computationally inexpensive models to predict materials properties. These models in turn enable rapid screening of large materials search space. However, materials datasets describing functional properties are typically small, which creates challenges pertaining to interpretability and transferability when exploring them with conventional ML approaches. Further, correlations within the dataset can lead to instability (nonunique functional models relating inputs to outputs) and overfitting. In this work, we address these issues by developing a new approach, in which ML with the Bootstrapped projected gradient descent algorithm is constrained with Buckingham Pi theorem-based dimensional analysis and scaling laws of relationships between different input descriptors (properties). This constrained learning model enables us to learn from small data and develop predictive models that are accurate, computationally inexpensive, and physically interpretable. We demonstrate this approach by developing a simple model to predict the intrinsic dielectric breakdown field based on an available dataset of 82 compounds. Our approach is generic in nature and is expected to work effectively with other sparse materials datasets.
doi_str_mv 10.1021/acs.chemmater.8b02837
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_8b02837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c257670060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-42558be1f9d66fa4944f7eb5eef794d87bbc37206c420230c8817532e400e19f3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQQC0EEqVwBCQfgBTbiROHXdXyk1KxaFlHk2RMXSVOZQdVvQnHxVErtmxmNJ83Gj1C7jmbcSb4I9R-Vm-x62BAN1MVEyrOLsiES8EiyZi4JBOm8ixKMplekxvvd4zxgKoJ-VlBvTUWaYHgrLFfdNFbPzgIvYYezLClS9Oh9aa30NJ5CEdvPAXb0HUN7UgUcPBPdG26fYsPdOPAeo0OqrEa995t-GvvcBhbdNU32Hraa7oa_zUQCu36jq47aFu6hAE8Dv6WXOkwwrtznpLPl-fN4i0qPl7fF_MiApHLIUqElKpCrvMmTTUkeZLoDCuJqLM8aVRWVXWcCZbWiWAiZrVSPJOxwIQx5LmOp0Se7tau996hLvfOdOCOJWflqLcMess_veVZb-D4iRvHu_7bBTP-H-YXzGaFcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets</title><source>ACS Publications</source><creator>Kumar, Narendra ; Rajagopalan, Padmini ; Pankajakshan, Praveen ; Bhattacharyya, Arnab ; Sanyal, Suchismita ; Balachandran, Janakiraman ; Waghmare, Umesh V</creator><creatorcontrib>Kumar, Narendra ; Rajagopalan, Padmini ; Pankajakshan, Praveen ; Bhattacharyya, Arnab ; Sanyal, Suchismita ; Balachandran, Janakiraman ; Waghmare, Umesh V</creatorcontrib><description>Machine learning (ML) from materials databases can accelerate the design and discovery of new materials through the development of accurate, computationally inexpensive models to predict materials properties. These models in turn enable rapid screening of large materials search space. However, materials datasets describing functional properties are typically small, which creates challenges pertaining to interpretability and transferability when exploring them with conventional ML approaches. Further, correlations within the dataset can lead to instability (nonunique functional models relating inputs to outputs) and overfitting. In this work, we address these issues by developing a new approach, in which ML with the Bootstrapped projected gradient descent algorithm is constrained with Buckingham Pi theorem-based dimensional analysis and scaling laws of relationships between different input descriptors (properties). This constrained learning model enables us to learn from small data and develop predictive models that are accurate, computationally inexpensive, and physically interpretable. We demonstrate this approach by developing a simple model to predict the intrinsic dielectric breakdown field based on an available dataset of 82 compounds. Our approach is generic in nature and is expected to work effectively with other sparse materials datasets.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.8b02837</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2019-01, Vol.31 (2), p.314-321</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-42558be1f9d66fa4944f7eb5eef794d87bbc37206c420230c8817532e400e19f3</citedby><cites>FETCH-LOGICAL-a295t-42558be1f9d66fa4944f7eb5eef794d87bbc37206c420230c8817532e400e19f3</cites><orcidid>0000-0002-2279-4441 ; 0000-0002-9378-155X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.8b02837$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.8b02837$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Kumar, Narendra</creatorcontrib><creatorcontrib>Rajagopalan, Padmini</creatorcontrib><creatorcontrib>Pankajakshan, Praveen</creatorcontrib><creatorcontrib>Bhattacharyya, Arnab</creatorcontrib><creatorcontrib>Sanyal, Suchismita</creatorcontrib><creatorcontrib>Balachandran, Janakiraman</creatorcontrib><creatorcontrib>Waghmare, Umesh V</creatorcontrib><title>Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Machine learning (ML) from materials databases can accelerate the design and discovery of new materials through the development of accurate, computationally inexpensive models to predict materials properties. These models in turn enable rapid screening of large materials search space. However, materials datasets describing functional properties are typically small, which creates challenges pertaining to interpretability and transferability when exploring them with conventional ML approaches. Further, correlations within the dataset can lead to instability (nonunique functional models relating inputs to outputs) and overfitting. In this work, we address these issues by developing a new approach, in which ML with the Bootstrapped projected gradient descent algorithm is constrained with Buckingham Pi theorem-based dimensional analysis and scaling laws of relationships between different input descriptors (properties). This constrained learning model enables us to learn from small data and develop predictive models that are accurate, computationally inexpensive, and physically interpretable. We demonstrate this approach by developing a simple model to predict the intrinsic dielectric breakdown field based on an available dataset of 82 compounds. Our approach is generic in nature and is expected to work effectively with other sparse materials datasets.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQQC0EEqVwBCQfgBTbiROHXdXyk1KxaFlHk2RMXSVOZQdVvQnHxVErtmxmNJ83Gj1C7jmbcSb4I9R-Vm-x62BAN1MVEyrOLsiES8EiyZi4JBOm8ixKMplekxvvd4zxgKoJ-VlBvTUWaYHgrLFfdNFbPzgIvYYezLClS9Oh9aa30NJ5CEdvPAXb0HUN7UgUcPBPdG26fYsPdOPAeo0OqrEa995t-GvvcBhbdNU32Hraa7oa_zUQCu36jq47aFu6hAE8Dv6WXOkwwrtznpLPl-fN4i0qPl7fF_MiApHLIUqElKpCrvMmTTUkeZLoDCuJqLM8aVRWVXWcCZbWiWAiZrVSPJOxwIQx5LmOp0Se7tau996hLvfOdOCOJWflqLcMess_veVZb-D4iRvHu_7bBTP-H-YXzGaFcg</recordid><startdate>20190122</startdate><enddate>20190122</enddate><creator>Kumar, Narendra</creator><creator>Rajagopalan, Padmini</creator><creator>Pankajakshan, Praveen</creator><creator>Bhattacharyya, Arnab</creator><creator>Sanyal, Suchismita</creator><creator>Balachandran, Janakiraman</creator><creator>Waghmare, Umesh V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2279-4441</orcidid><orcidid>https://orcid.org/0000-0002-9378-155X</orcidid></search><sort><creationdate>20190122</creationdate><title>Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets</title><author>Kumar, Narendra ; Rajagopalan, Padmini ; Pankajakshan, Praveen ; Bhattacharyya, Arnab ; Sanyal, Suchismita ; Balachandran, Janakiraman ; Waghmare, Umesh V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-42558be1f9d66fa4944f7eb5eef794d87bbc37206c420230c8817532e400e19f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Narendra</creatorcontrib><creatorcontrib>Rajagopalan, Padmini</creatorcontrib><creatorcontrib>Pankajakshan, Praveen</creatorcontrib><creatorcontrib>Bhattacharyya, Arnab</creatorcontrib><creatorcontrib>Sanyal, Suchismita</creatorcontrib><creatorcontrib>Balachandran, Janakiraman</creatorcontrib><creatorcontrib>Waghmare, Umesh V</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Narendra</au><au>Rajagopalan, Padmini</au><au>Pankajakshan, Praveen</au><au>Bhattacharyya, Arnab</au><au>Sanyal, Suchismita</au><au>Balachandran, Janakiraman</au><au>Waghmare, Umesh V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-01-22</date><risdate>2019</risdate><volume>31</volume><issue>2</issue><spage>314</spage><epage>321</epage><pages>314-321</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Machine learning (ML) from materials databases can accelerate the design and discovery of new materials through the development of accurate, computationally inexpensive models to predict materials properties. These models in turn enable rapid screening of large materials search space. However, materials datasets describing functional properties are typically small, which creates challenges pertaining to interpretability and transferability when exploring them with conventional ML approaches. Further, correlations within the dataset can lead to instability (nonunique functional models relating inputs to outputs) and overfitting. In this work, we address these issues by developing a new approach, in which ML with the Bootstrapped projected gradient descent algorithm is constrained with Buckingham Pi theorem-based dimensional analysis and scaling laws of relationships between different input descriptors (properties). This constrained learning model enables us to learn from small data and develop predictive models that are accurate, computationally inexpensive, and physically interpretable. We demonstrate this approach by developing a simple model to predict the intrinsic dielectric breakdown field based on an available dataset of 82 compounds. Our approach is generic in nature and is expected to work effectively with other sparse materials datasets.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.8b02837</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2279-4441</orcidid><orcidid>https://orcid.org/0000-0002-9378-155X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-01, Vol.31 (2), p.314-321
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_8b02837
source ACS Publications
title Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Constrained%20with%20Dimensional%20Analysis%20and%20Scaling%20Laws:%20Simple,%20Transferable,%20and%20Interpretable%20Models%20of%20Materials%20from%20Small%20Datasets&rft.jtitle=Chemistry%20of%20materials&rft.au=Kumar,%20Narendra&rft.date=2019-01-22&rft.volume=31&rft.issue=2&rft.spage=314&rft.epage=321&rft.pages=314-321&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.8b02837&rft_dat=%3Cacs_cross%3Ec257670060%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true