Structural Diversity from Anion Order in Heteroanionic Materials

Heteroanionic materials leverage the advantages offered by two different anions coordinating the same or different cations to realize unanticipated or enhanced electronic, optical, and magnetic responses. Beyond chemical variations offered by the anions, the ability to control the anion order presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2018-05, Vol.30 (10), p.3528-3537
Hauptverfasser: Charles, Nenian, Saballos, Richard J, Rondinelli, James M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3537
container_issue 10
container_start_page 3528
container_title Chemistry of materials
container_volume 30
creator Charles, Nenian
Saballos, Richard J
Rondinelli, James M
description Heteroanionic materials leverage the advantages offered by two different anions coordinating the same or different cations to realize unanticipated or enhanced electronic, optical, and magnetic responses. Beyond chemical variations offered by the anions, the ability to control the anion order present within a single transition metal polyhedron via anion-sublattice engineering offers a potentially transformative strategy in tuning material properties. The set of design rules for realizing and controlling anion order, however, are incomplete, which is due in part to the limited anion-ordered diversity in known structures. This aspect makes formulating such principles from experiment alone challenging. Here, we demonstrate how computational methods at multiple levels of theory are effective at investigating the anion site order dependencies in heteroanionic materials, HAMs, and enable the construction of crystal-chemistry principles. Our approach relies on a database of anion ordered structure variants in which we manipulate the lattice degrees of freedom through the incorporation of structural distortions. Structure–property relationships and anion-order descriptors are data mined from group theoretical techniques and density functional theory calculations. Using our combined computational scheme, we uncover a hybrid improper mechanism to stabilize polar phases, propose the chemical link between local and long ranger anion order, and detail the sequence of order–disorder/displacive transitions observed experimentally in the oxyfluoride Na3MoO3F3. Our method is scalable and transferable to many heteroanionic chemistries and crystal families, facilitating the construction of heteroanionic materials design principles.
doi_str_mv 10.1021/acs.chemmater.8b01336
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_8b01336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d018957543</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-46017b2d58e955f95d6751d26aa8750a8cc547d7829d98541d7ad15b337dd6413</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoWKePIOQFWnPSniS9c0zdhMku1OuSJilmrK0krbC3t2XDW69-OIfvP4ePkHtgGTAOD9rEzHy5ttWDC5mqGeS5uCAJIGcpMsYvScJUKdNCorgmNzHuGYMJVQl5fB_CaIYx6AN98j8uRD8caRP6li4733d0F6wL1Hd046b2Xs9Db-jbfMvrQ7wlV80U7u6cC_L58vyx2qTb3fp1tdymOhcwpIVgIGtuUbkSsSnRColgudBaSWRaGYOFtFLx0pYKC7BSW8A6z6W1ooB8QfDUa0IfY3BN9R18q8OxAlbNGqpJQ_WnoTprmDg4cfN634-hm778h_kFGyZlNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Diversity from Anion Order in Heteroanionic Materials</title><source>ACS Publications</source><creator>Charles, Nenian ; Saballos, Richard J ; Rondinelli, James M</creator><creatorcontrib>Charles, Nenian ; Saballos, Richard J ; Rondinelli, James M</creatorcontrib><description>Heteroanionic materials leverage the advantages offered by two different anions coordinating the same or different cations to realize unanticipated or enhanced electronic, optical, and magnetic responses. Beyond chemical variations offered by the anions, the ability to control the anion order present within a single transition metal polyhedron via anion-sublattice engineering offers a potentially transformative strategy in tuning material properties. The set of design rules for realizing and controlling anion order, however, are incomplete, which is due in part to the limited anion-ordered diversity in known structures. This aspect makes formulating such principles from experiment alone challenging. Here, we demonstrate how computational methods at multiple levels of theory are effective at investigating the anion site order dependencies in heteroanionic materials, HAMs, and enable the construction of crystal-chemistry principles. Our approach relies on a database of anion ordered structure variants in which we manipulate the lattice degrees of freedom through the incorporation of structural distortions. Structure–property relationships and anion-order descriptors are data mined from group theoretical techniques and density functional theory calculations. Using our combined computational scheme, we uncover a hybrid improper mechanism to stabilize polar phases, propose the chemical link between local and long ranger anion order, and detail the sequence of order–disorder/displacive transitions observed experimentally in the oxyfluoride Na3MoO3F3. Our method is scalable and transferable to many heteroanionic chemistries and crystal families, facilitating the construction of heteroanionic materials design principles.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.8b01336</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2018-05, Vol.30 (10), p.3528-3537</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-46017b2d58e955f95d6751d26aa8750a8cc547d7829d98541d7ad15b337dd6413</citedby><cites>FETCH-LOGICAL-a361t-46017b2d58e955f95d6751d26aa8750a8cc547d7829d98541d7ad15b337dd6413</cites><orcidid>0000-0003-0508-2175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.8b01336$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.8b01336$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Charles, Nenian</creatorcontrib><creatorcontrib>Saballos, Richard J</creatorcontrib><creatorcontrib>Rondinelli, James M</creatorcontrib><title>Structural Diversity from Anion Order in Heteroanionic Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Heteroanionic materials leverage the advantages offered by two different anions coordinating the same or different cations to realize unanticipated or enhanced electronic, optical, and magnetic responses. Beyond chemical variations offered by the anions, the ability to control the anion order present within a single transition metal polyhedron via anion-sublattice engineering offers a potentially transformative strategy in tuning material properties. The set of design rules for realizing and controlling anion order, however, are incomplete, which is due in part to the limited anion-ordered diversity in known structures. This aspect makes formulating such principles from experiment alone challenging. Here, we demonstrate how computational methods at multiple levels of theory are effective at investigating the anion site order dependencies in heteroanionic materials, HAMs, and enable the construction of crystal-chemistry principles. Our approach relies on a database of anion ordered structure variants in which we manipulate the lattice degrees of freedom through the incorporation of structural distortions. Structure–property relationships and anion-order descriptors are data mined from group theoretical techniques and density functional theory calculations. Using our combined computational scheme, we uncover a hybrid improper mechanism to stabilize polar phases, propose the chemical link between local and long ranger anion order, and detail the sequence of order–disorder/displacive transitions observed experimentally in the oxyfluoride Na3MoO3F3. Our method is scalable and transferable to many heteroanionic chemistries and crystal families, facilitating the construction of heteroanionic materials design principles.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoWKePIOQFWnPSniS9c0zdhMku1OuSJilmrK0krbC3t2XDW69-OIfvP4ePkHtgGTAOD9rEzHy5ttWDC5mqGeS5uCAJIGcpMsYvScJUKdNCorgmNzHuGYMJVQl5fB_CaIYx6AN98j8uRD8caRP6li4733d0F6wL1Hd046b2Xs9Db-jbfMvrQ7wlV80U7u6cC_L58vyx2qTb3fp1tdymOhcwpIVgIGtuUbkSsSnRColgudBaSWRaGYOFtFLx0pYKC7BSW8A6z6W1ooB8QfDUa0IfY3BN9R18q8OxAlbNGqpJQ_WnoTprmDg4cfN634-hm778h_kFGyZlNQ</recordid><startdate>20180522</startdate><enddate>20180522</enddate><creator>Charles, Nenian</creator><creator>Saballos, Richard J</creator><creator>Rondinelli, James M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0508-2175</orcidid></search><sort><creationdate>20180522</creationdate><title>Structural Diversity from Anion Order in Heteroanionic Materials</title><author>Charles, Nenian ; Saballos, Richard J ; Rondinelli, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-46017b2d58e955f95d6751d26aa8750a8cc547d7829d98541d7ad15b337dd6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, Nenian</creatorcontrib><creatorcontrib>Saballos, Richard J</creatorcontrib><creatorcontrib>Rondinelli, James M</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, Nenian</au><au>Saballos, Richard J</au><au>Rondinelli, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Diversity from Anion Order in Heteroanionic Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2018-05-22</date><risdate>2018</risdate><volume>30</volume><issue>10</issue><spage>3528</spage><epage>3537</epage><pages>3528-3537</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Heteroanionic materials leverage the advantages offered by two different anions coordinating the same or different cations to realize unanticipated or enhanced electronic, optical, and magnetic responses. Beyond chemical variations offered by the anions, the ability to control the anion order present within a single transition metal polyhedron via anion-sublattice engineering offers a potentially transformative strategy in tuning material properties. The set of design rules for realizing and controlling anion order, however, are incomplete, which is due in part to the limited anion-ordered diversity in known structures. This aspect makes formulating such principles from experiment alone challenging. Here, we demonstrate how computational methods at multiple levels of theory are effective at investigating the anion site order dependencies in heteroanionic materials, HAMs, and enable the construction of crystal-chemistry principles. Our approach relies on a database of anion ordered structure variants in which we manipulate the lattice degrees of freedom through the incorporation of structural distortions. Structure–property relationships and anion-order descriptors are data mined from group theoretical techniques and density functional theory calculations. Using our combined computational scheme, we uncover a hybrid improper mechanism to stabilize polar phases, propose the chemical link between local and long ranger anion order, and detail the sequence of order–disorder/displacive transitions observed experimentally in the oxyfluoride Na3MoO3F3. Our method is scalable and transferable to many heteroanionic chemistries and crystal families, facilitating the construction of heteroanionic materials design principles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.8b01336</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0508-2175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2018-05, Vol.30 (10), p.3528-3537
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_8b01336
source ACS Publications
title Structural Diversity from Anion Order in Heteroanionic Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Diversity%20from%20Anion%20Order%20in%20Heteroanionic%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Charles,%20Nenian&rft.date=2018-05-22&rft.volume=30&rft.issue=10&rft.spage=3528&rft.epage=3537&rft.pages=3528-3537&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.8b01336&rft_dat=%3Cacs_cross%3Ed018957543%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true