Forging Solid-State Qubit Design Principles in a Molecular Furnace

The realization of quantum information processing would disrupt the status quo in the realm of computation; the extraordinary power of a hypothetical quantum computer motivates significant research efforts toward creating such a device. One promising route to enable quantum information processing in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-03, Vol.29 (5), p.1885-1897
Hauptverfasser: Graham, Michael J, Zadrozny, Joseph M, Fataftah, Majed S, Freedman, Danna E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1897
container_issue 5
container_start_page 1885
container_title Chemistry of materials
container_volume 29
creator Graham, Michael J
Zadrozny, Joseph M
Fataftah, Majed S
Freedman, Danna E
description The realization of quantum information processing would disrupt the status quo in the realm of computation; the extraordinary power of a hypothetical quantum computer motivates significant research efforts toward creating such a device. One promising route to enable quantum information processing involves employing electronic spins as the elementary unit of information, known as a qubit. Within this paradigm, paramagnetic defect sites in solid-state materials demonstrate appreciable promise, and recent developments in paramagnetic molecular coordination complexes illustrate an encouraging trajectory. While solid-state systems exhibit long spin coherence lifetimes, rational control of their properties remains challenging. Effecting synthetic control over qubit design prompted the study of tunable molecular species to develop design principles for spin coherence lifetimes. The challenge now lies in extending those molecular design principles to target new solid-state architectures that could enable device-scale systems. In this perspective, we detail recent progress in the rational design of molecular qubit complexes and highlight the advances that will be necessary in order to apply that progress to solid-state systems. We further examine the impact that the lessons learned from the study of qubits can have in the related fields of magnetic resonance imaging and biological sensing.
doi_str_mv 10.1021/acs.chemmater.6b05433
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_6b05433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d264827435</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-cb5f82c1832fcee27573a9b5c567c3b70034567fecb59905de22c3dcbb9fd2e93</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqHwCUj-gZSxHeexhEILUhGgwjqyJ5PgKk0qO13w9yRqxZbVjDT3XI0OY7cC5gKkuDMY5vhNu50ZyM9TCzpR6oxFQkuINYA8ZxHkRRYnmU4v2VUIWwAxonnEHpa9b1zX8E3fuireDGMH_zhYN_BHCq7p-Lt3Hbp9S4G7jhv-2reEh9Z4vjz4ziBds4vatIFuTnPGvpZPn4vneP22elncr2OjEjnEaHWdSxS5kjUSyUxnyhRWo04zVDYDUMm41jQGiwJ0RVKiqtDaoq4kFWrG9LEXfR-Cp7rce7cz_qcUUE4iylFE-SeiPIkYOXHkpvO2n55uwz_ML-LGZnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forging Solid-State Qubit Design Principles in a Molecular Furnace</title><source>ACS Publications</source><creator>Graham, Michael J ; Zadrozny, Joseph M ; Fataftah, Majed S ; Freedman, Danna E</creator><creatorcontrib>Graham, Michael J ; Zadrozny, Joseph M ; Fataftah, Majed S ; Freedman, Danna E</creatorcontrib><description>The realization of quantum information processing would disrupt the status quo in the realm of computation; the extraordinary power of a hypothetical quantum computer motivates significant research efforts toward creating such a device. One promising route to enable quantum information processing involves employing electronic spins as the elementary unit of information, known as a qubit. Within this paradigm, paramagnetic defect sites in solid-state materials demonstrate appreciable promise, and recent developments in paramagnetic molecular coordination complexes illustrate an encouraging trajectory. While solid-state systems exhibit long spin coherence lifetimes, rational control of their properties remains challenging. Effecting synthetic control over qubit design prompted the study of tunable molecular species to develop design principles for spin coherence lifetimes. The challenge now lies in extending those molecular design principles to target new solid-state architectures that could enable device-scale systems. In this perspective, we detail recent progress in the rational design of molecular qubit complexes and highlight the advances that will be necessary in order to apply that progress to solid-state systems. We further examine the impact that the lessons learned from the study of qubits can have in the related fields of magnetic resonance imaging and biological sensing.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.6b05433</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2017-03, Vol.29 (5), p.1885-1897</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-cb5f82c1832fcee27573a9b5c567c3b70034567fecb59905de22c3dcbb9fd2e93</citedby><cites>FETCH-LOGICAL-a342t-cb5f82c1832fcee27573a9b5c567c3b70034567fecb59905de22c3dcbb9fd2e93</cites><orcidid>0000-0002-2579-8835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.6b05433$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.6b05433$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Graham, Michael J</creatorcontrib><creatorcontrib>Zadrozny, Joseph M</creatorcontrib><creatorcontrib>Fataftah, Majed S</creatorcontrib><creatorcontrib>Freedman, Danna E</creatorcontrib><title>Forging Solid-State Qubit Design Principles in a Molecular Furnace</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The realization of quantum information processing would disrupt the status quo in the realm of computation; the extraordinary power of a hypothetical quantum computer motivates significant research efforts toward creating such a device. One promising route to enable quantum information processing involves employing electronic spins as the elementary unit of information, known as a qubit. Within this paradigm, paramagnetic defect sites in solid-state materials demonstrate appreciable promise, and recent developments in paramagnetic molecular coordination complexes illustrate an encouraging trajectory. While solid-state systems exhibit long spin coherence lifetimes, rational control of their properties remains challenging. Effecting synthetic control over qubit design prompted the study of tunable molecular species to develop design principles for spin coherence lifetimes. The challenge now lies in extending those molecular design principles to target new solid-state architectures that could enable device-scale systems. In this perspective, we detail recent progress in the rational design of molecular qubit complexes and highlight the advances that will be necessary in order to apply that progress to solid-state systems. We further examine the impact that the lessons learned from the study of qubits can have in the related fields of magnetic resonance imaging and biological sensing.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqHwCUj-gZSxHeexhEILUhGgwjqyJ5PgKk0qO13w9yRqxZbVjDT3XI0OY7cC5gKkuDMY5vhNu50ZyM9TCzpR6oxFQkuINYA8ZxHkRRYnmU4v2VUIWwAxonnEHpa9b1zX8E3fuireDGMH_zhYN_BHCq7p-Lt3Hbp9S4G7jhv-2reEh9Z4vjz4ziBds4vatIFuTnPGvpZPn4vneP22elncr2OjEjnEaHWdSxS5kjUSyUxnyhRWo04zVDYDUMm41jQGiwJ0RVKiqtDaoq4kFWrG9LEXfR-Cp7rce7cz_qcUUE4iylFE-SeiPIkYOXHkpvO2n55uwz_ML-LGZnI</recordid><startdate>20170314</startdate><enddate>20170314</enddate><creator>Graham, Michael J</creator><creator>Zadrozny, Joseph M</creator><creator>Fataftah, Majed S</creator><creator>Freedman, Danna E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid></search><sort><creationdate>20170314</creationdate><title>Forging Solid-State Qubit Design Principles in a Molecular Furnace</title><author>Graham, Michael J ; Zadrozny, Joseph M ; Fataftah, Majed S ; Freedman, Danna E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-cb5f82c1832fcee27573a9b5c567c3b70034567fecb59905de22c3dcbb9fd2e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Michael J</creatorcontrib><creatorcontrib>Zadrozny, Joseph M</creatorcontrib><creatorcontrib>Fataftah, Majed S</creatorcontrib><creatorcontrib>Freedman, Danna E</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Michael J</au><au>Zadrozny, Joseph M</au><au>Fataftah, Majed S</au><au>Freedman, Danna E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forging Solid-State Qubit Design Principles in a Molecular Furnace</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-03-14</date><risdate>2017</risdate><volume>29</volume><issue>5</issue><spage>1885</spage><epage>1897</epage><pages>1885-1897</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The realization of quantum information processing would disrupt the status quo in the realm of computation; the extraordinary power of a hypothetical quantum computer motivates significant research efforts toward creating such a device. One promising route to enable quantum information processing involves employing electronic spins as the elementary unit of information, known as a qubit. Within this paradigm, paramagnetic defect sites in solid-state materials demonstrate appreciable promise, and recent developments in paramagnetic molecular coordination complexes illustrate an encouraging trajectory. While solid-state systems exhibit long spin coherence lifetimes, rational control of their properties remains challenging. Effecting synthetic control over qubit design prompted the study of tunable molecular species to develop design principles for spin coherence lifetimes. The challenge now lies in extending those molecular design principles to target new solid-state architectures that could enable device-scale systems. In this perspective, we detail recent progress in the rational design of molecular qubit complexes and highlight the advances that will be necessary in order to apply that progress to solid-state systems. We further examine the impact that the lessons learned from the study of qubits can have in the related fields of magnetic resonance imaging and biological sensing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.6b05433</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-03, Vol.29 (5), p.1885-1897
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_6b05433
source ACS Publications
title Forging Solid-State Qubit Design Principles in a Molecular Furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forging%20Solid-State%20Qubit%20Design%20Principles%20in%20a%20Molecular%20Furnace&rft.jtitle=Chemistry%20of%20materials&rft.au=Graham,%20Michael%20J&rft.date=2017-03-14&rft.volume=29&rft.issue=5&rft.spage=1885&rft.epage=1897&rft.pages=1885-1897&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.6b05433&rft_dat=%3Cacs_cross%3Ed264827435%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true