Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation

We developed a general synthetic route for preparing nanoporous transition metal/ceria solid solutions with nanocrystalline frameworks (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe). Their structural properties were characterized using transmission electron microscopy (TEM), X-ray powder diffraction (XRP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-04, Vol.29 (7), p.2874-2882
Hauptverfasser: Lee, Kyung Joo, Kim, Yongseon, Lee, Jae Hwa, Cho, Sung June, Kwak, Ja Hun, Moon, Hoi Ri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2882
container_issue 7
container_start_page 2874
container_title Chemistry of materials
container_volume 29
creator Lee, Kyung Joo
Kim, Yongseon
Lee, Jae Hwa
Cho, Sung June
Kwak, Ja Hun
Moon, Hoi Ri
description We developed a general synthetic route for preparing nanoporous transition metal/ceria solid solutions with nanocrystalline frameworks (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe). Their structural properties were characterized using transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), and N2 sorption. Through thermolysis of bimetallic coordination polymers, hierarchically nanoporous frameworks composed of 3–4 nm TM x Ce1–x O2−δ solid solution nanocrystals in which the transition metal ions are well-dispersed in the ceria lattice as evidenced by the Rietveld refinement of the XRPD patterns were synthesized. The electronic properties of the Mn x Ce1–x O2−δ solid solutions at up to 20 mol % were examined by Raman spectroscopy and X-ray photoelectron spectroscopy analysis, and H2-temperature-programmed reduction results demonstrated the altered physicochemical properties, e.g., hydrogen reduction behaviors, due to the doping. CO oxidation studies of Mn x Ce1–x O2−δ reveal that the Mn species are responsible for increasing the catalytic activity by an order of magnitude compared to that of pure ceria, by creating nanostructures with accessible pores and active sites on the inner surface. This facile synthetic approach can create nanoporous solid solutions with nanocrystalline frameworks and devise structures and compositions. Therefore, our approach opens new avenues for developing multimetallic catalyst systems.
doi_str_mv 10.1021/acs.chemmater.6b05098
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_6b05098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a433723374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-a476b22022806ade1052c6f1a668cb3ebe34c74af88957a47265fac2a7b016bf3</originalsourceid><addsrcrecordid>eNqFUL1OwzAQthBIlMIjIN0IUtPaTuKkAwOKKCD1Z2iZo4vjqEZtguxUapkYmWHnKXgOHqJPgtNWrCz3Sff93Okj5JLRLqOc9VDarpyr5RJrZboioyHtx0ekxUJOvZBSfkxaNO5HXhCF4pScWftMKXPWuEW-Bij1QsF0U9ZzZbUFLHNI5mhQujT9irWuSqgKGGNZ2dqsZL0yKoeZwdLqHTlSNS56iVMjTKuFzpu5aigLV7MRrCFRbPv2uYYJ375__Hx3wG1vYFR2YKw7kFQdqAwM1DUUDpMJTNY63x0-JycFLqy6OGCbPA3uZsmDN5zcPya3Qw99wWoPg0hknFPOYyowV4yGXIqCoRCxzHyVKT-QUYBFHPfDyKm5CAuUHKOMMpEVfpuE-1xpKmuNKtIXo5doNimjaVNy6kpO_0pODyU7H9v7Gvq5WpnSffmP5xfAoob9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation</title><source>ACS Publications</source><creator>Lee, Kyung Joo ; Kim, Yongseon ; Lee, Jae Hwa ; Cho, Sung June ; Kwak, Ja Hun ; Moon, Hoi Ri</creator><creatorcontrib>Lee, Kyung Joo ; Kim, Yongseon ; Lee, Jae Hwa ; Cho, Sung June ; Kwak, Ja Hun ; Moon, Hoi Ri</creatorcontrib><description>We developed a general synthetic route for preparing nanoporous transition metal/ceria solid solutions with nanocrystalline frameworks (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe). Their structural properties were characterized using transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), and N2 sorption. Through thermolysis of bimetallic coordination polymers, hierarchically nanoporous frameworks composed of 3–4 nm TM x Ce1–x O2−δ solid solution nanocrystals in which the transition metal ions are well-dispersed in the ceria lattice as evidenced by the Rietveld refinement of the XRPD patterns were synthesized. The electronic properties of the Mn x Ce1–x O2−δ solid solutions at up to 20 mol % were examined by Raman spectroscopy and X-ray photoelectron spectroscopy analysis, and H2-temperature-programmed reduction results demonstrated the altered physicochemical properties, e.g., hydrogen reduction behaviors, due to the doping. CO oxidation studies of Mn x Ce1–x O2−δ reveal that the Mn species are responsible for increasing the catalytic activity by an order of magnitude compared to that of pure ceria, by creating nanostructures with accessible pores and active sites on the inner surface. This facile synthetic approach can create nanoporous solid solutions with nanocrystalline frameworks and devise structures and compositions. Therefore, our approach opens new avenues for developing multimetallic catalyst systems.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.6b05098</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2017-04, Vol.29 (7), p.2874-2882</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-a476b22022806ade1052c6f1a668cb3ebe34c74af88957a47265fac2a7b016bf3</citedby><cites>FETCH-LOGICAL-a361t-a476b22022806ade1052c6f1a668cb3ebe34c74af88957a47265fac2a7b016bf3</cites><orcidid>0000-0002-6967-894X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.6b05098$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.6b05098$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lee, Kyung Joo</creatorcontrib><creatorcontrib>Kim, Yongseon</creatorcontrib><creatorcontrib>Lee, Jae Hwa</creatorcontrib><creatorcontrib>Cho, Sung June</creatorcontrib><creatorcontrib>Kwak, Ja Hun</creatorcontrib><creatorcontrib>Moon, Hoi Ri</creatorcontrib><title>Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>We developed a general synthetic route for preparing nanoporous transition metal/ceria solid solutions with nanocrystalline frameworks (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe). Their structural properties were characterized using transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), and N2 sorption. Through thermolysis of bimetallic coordination polymers, hierarchically nanoporous frameworks composed of 3–4 nm TM x Ce1–x O2−δ solid solution nanocrystals in which the transition metal ions are well-dispersed in the ceria lattice as evidenced by the Rietveld refinement of the XRPD patterns were synthesized. The electronic properties of the Mn x Ce1–x O2−δ solid solutions at up to 20 mol % were examined by Raman spectroscopy and X-ray photoelectron spectroscopy analysis, and H2-temperature-programmed reduction results demonstrated the altered physicochemical properties, e.g., hydrogen reduction behaviors, due to the doping. CO oxidation studies of Mn x Ce1–x O2−δ reveal that the Mn species are responsible for increasing the catalytic activity by an order of magnitude compared to that of pure ceria, by creating nanostructures with accessible pores and active sites on the inner surface. This facile synthetic approach can create nanoporous solid solutions with nanocrystalline frameworks and devise structures and compositions. Therefore, our approach opens new avenues for developing multimetallic catalyst systems.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUL1OwzAQthBIlMIjIN0IUtPaTuKkAwOKKCD1Z2iZo4vjqEZtguxUapkYmWHnKXgOHqJPgtNWrCz3Sff93Okj5JLRLqOc9VDarpyr5RJrZboioyHtx0ekxUJOvZBSfkxaNO5HXhCF4pScWftMKXPWuEW-Bij1QsF0U9ZzZbUFLHNI5mhQujT9irWuSqgKGGNZ2dqsZL0yKoeZwdLqHTlSNS56iVMjTKuFzpu5aigLV7MRrCFRbPv2uYYJ375__Hx3wG1vYFR2YKw7kFQdqAwM1DUUDpMJTNY63x0-JycFLqy6OGCbPA3uZsmDN5zcPya3Qw99wWoPg0hknFPOYyowV4yGXIqCoRCxzHyVKT-QUYBFHPfDyKm5CAuUHKOMMpEVfpuE-1xpKmuNKtIXo5doNimjaVNy6kpO_0pODyU7H9v7Gvq5WpnSffmP5xfAoob9</recordid><startdate>20170411</startdate><enddate>20170411</enddate><creator>Lee, Kyung Joo</creator><creator>Kim, Yongseon</creator><creator>Lee, Jae Hwa</creator><creator>Cho, Sung June</creator><creator>Kwak, Ja Hun</creator><creator>Moon, Hoi Ri</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6967-894X</orcidid></search><sort><creationdate>20170411</creationdate><title>Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation</title><author>Lee, Kyung Joo ; Kim, Yongseon ; Lee, Jae Hwa ; Cho, Sung June ; Kwak, Ja Hun ; Moon, Hoi Ri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-a476b22022806ade1052c6f1a668cb3ebe34c74af88957a47265fac2a7b016bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyung Joo</creatorcontrib><creatorcontrib>Kim, Yongseon</creatorcontrib><creatorcontrib>Lee, Jae Hwa</creatorcontrib><creatorcontrib>Cho, Sung June</creatorcontrib><creatorcontrib>Kwak, Ja Hun</creatorcontrib><creatorcontrib>Moon, Hoi Ri</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyung Joo</au><au>Kim, Yongseon</au><au>Lee, Jae Hwa</au><au>Cho, Sung June</au><au>Kwak, Ja Hun</au><au>Moon, Hoi Ri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-04-11</date><risdate>2017</risdate><volume>29</volume><issue>7</issue><spage>2874</spage><epage>2882</epage><pages>2874-2882</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>We developed a general synthetic route for preparing nanoporous transition metal/ceria solid solutions with nanocrystalline frameworks (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe). Their structural properties were characterized using transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), and N2 sorption. Through thermolysis of bimetallic coordination polymers, hierarchically nanoporous frameworks composed of 3–4 nm TM x Ce1–x O2−δ solid solution nanocrystals in which the transition metal ions are well-dispersed in the ceria lattice as evidenced by the Rietveld refinement of the XRPD patterns were synthesized. The electronic properties of the Mn x Ce1–x O2−δ solid solutions at up to 20 mol % were examined by Raman spectroscopy and X-ray photoelectron spectroscopy analysis, and H2-temperature-programmed reduction results demonstrated the altered physicochemical properties, e.g., hydrogen reduction behaviors, due to the doping. CO oxidation studies of Mn x Ce1–x O2−δ reveal that the Mn species are responsible for increasing the catalytic activity by an order of magnitude compared to that of pure ceria, by creating nanostructures with accessible pores and active sites on the inner surface. This facile synthetic approach can create nanoporous solid solutions with nanocrystalline frameworks and devise structures and compositions. Therefore, our approach opens new avenues for developing multimetallic catalyst systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.6b05098</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6967-894X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-04, Vol.29 (7), p.2874-2882
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_6b05098
source ACS Publications
title Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM x Ce1–x O2−δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Synthesis%20and%20Characterization%20of%20Nanostructured%20Transition%20Metal/Ceria%20Solid%20Solutions%20(TM%20x%20Ce1%E2%80%93x%20O2%E2%88%92%CE%B4,%20TM%20=%20Mn,%20Ni,%20Co,%20or%20Fe)%20for%20CO%20Oxidation&rft.jtitle=Chemistry%20of%20materials&rft.au=Lee,%20Kyung%20Joo&rft.date=2017-04-11&rft.volume=29&rft.issue=7&rft.spage=2874&rft.epage=2882&rft.pages=2874-2882&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.6b05098&rft_dat=%3Cacs_cross%3Ea433723374%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true