Efficient Room-Temperature Cooling with Magnets

Magnetic cooling is a highly efficient refrigeration technique with the potential to replace the traditional vapor compression cycle. It is based on the magnetocaloric effect, which is associated with the temperature change of a material when placed in a magnetic field. We present experimental evide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-07, Vol.28 (14), p.4901-4905
Hauptverfasser: Boeije, M. F. J, Roy, P, Guillou, F, Yibole, H, Miao, X. F, Caron, L, Banerjee, D, van Dijk, N. H, de Groot, R. A, Brück, E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4905
container_issue 14
container_start_page 4901
container_title Chemistry of materials
container_volume 28
creator Boeije, M. F. J
Roy, P
Guillou, F
Yibole, H
Miao, X. F
Caron, L
Banerjee, D
van Dijk, N. H
de Groot, R. A
Brück, E
description Magnetic cooling is a highly efficient refrigeration technique with the potential to replace the traditional vapor compression cycle. It is based on the magnetocaloric effect, which is associated with the temperature change of a material when placed in a magnetic field. We present experimental evidence for the origin of the giant entropy change found in the most promising materials, in the form of an electronic reconstruction caused by the competition between magnetism and bonding. The effect manifests itself as a redistribution of the electron density, which was measured by X-ray absorption and diffraction on MnFe­(P,Si,B). The electronic redistribution is consistent with the formation of a covalent bond, resulting in a large drop in the Fe magnetic moments. The simultaneous change in bond length and strength, magnetism, and electron density provides the basis of the giant magnetocaloric effect. This new understanding of the mechanism of first order magneto-elastic phase transitions provides an essential step for new and improved magnetic refrigerants.
doi_str_mv 10.1021/acs.chemmater.6b00518
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_6b00518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a958915394</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7cda18822b21450c67bb201829c36315955100f58082f5025ed1d313b82ac3c23</originalsourceid><addsrcrecordid>eNqFj11LwzAYhYMoWKc_QegfSPe-b5o2vZQxP2AiyLwuaZpsHWszkg7x39ux4a1X5-LwHM7D2CNChkA41yZmZmv7Xo82ZEUDIFFdsQQlAZcAdM0SUFXJ81IWt-wuxh0ATqhK2HzpXGc6O4zpp_c9X9v-YIMej8GmC-_33bBJv7txm77rzWDHeM9unN5H-3DJGft6Xq4Xr3z18fK2eFpxLXIaeWlajUoRNYS5BFOUTUOAiiojCoGykhIBnFSgyEkgaVtsBYpGkTbCkJgxed41wccYrKsPoet1-KkR6pN1PVnXf9b1xXri8Myd6p0_hmF6-Q_zC9V4Xfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Room-Temperature Cooling with Magnets</title><source>American Chemical Society Journals</source><creator>Boeije, M. F. J ; Roy, P ; Guillou, F ; Yibole, H ; Miao, X. F ; Caron, L ; Banerjee, D ; van Dijk, N. H ; de Groot, R. A ; Brück, E</creator><creatorcontrib>Boeije, M. F. J ; Roy, P ; Guillou, F ; Yibole, H ; Miao, X. F ; Caron, L ; Banerjee, D ; van Dijk, N. H ; de Groot, R. A ; Brück, E</creatorcontrib><description>Magnetic cooling is a highly efficient refrigeration technique with the potential to replace the traditional vapor compression cycle. It is based on the magnetocaloric effect, which is associated with the temperature change of a material when placed in a magnetic field. We present experimental evidence for the origin of the giant entropy change found in the most promising materials, in the form of an electronic reconstruction caused by the competition between magnetism and bonding. The effect manifests itself as a redistribution of the electron density, which was measured by X-ray absorption and diffraction on MnFe­(P,Si,B). The electronic redistribution is consistent with the formation of a covalent bond, resulting in a large drop in the Fe magnetic moments. The simultaneous change in bond length and strength, magnetism, and electron density provides the basis of the giant magnetocaloric effect. This new understanding of the mechanism of first order magneto-elastic phase transitions provides an essential step for new and improved magnetic refrigerants.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.6b00518</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2016-07, Vol.28 (14), p.4901-4905</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7cda18822b21450c67bb201829c36315955100f58082f5025ed1d313b82ac3c23</citedby><cites>FETCH-LOGICAL-a342t-7cda18822b21450c67bb201829c36315955100f58082f5025ed1d313b82ac3c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.6b00518$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.6b00518$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Boeije, M. F. J</creatorcontrib><creatorcontrib>Roy, P</creatorcontrib><creatorcontrib>Guillou, F</creatorcontrib><creatorcontrib>Yibole, H</creatorcontrib><creatorcontrib>Miao, X. F</creatorcontrib><creatorcontrib>Caron, L</creatorcontrib><creatorcontrib>Banerjee, D</creatorcontrib><creatorcontrib>van Dijk, N. H</creatorcontrib><creatorcontrib>de Groot, R. A</creatorcontrib><creatorcontrib>Brück, E</creatorcontrib><title>Efficient Room-Temperature Cooling with Magnets</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Magnetic cooling is a highly efficient refrigeration technique with the potential to replace the traditional vapor compression cycle. It is based on the magnetocaloric effect, which is associated with the temperature change of a material when placed in a magnetic field. We present experimental evidence for the origin of the giant entropy change found in the most promising materials, in the form of an electronic reconstruction caused by the competition between magnetism and bonding. The effect manifests itself as a redistribution of the electron density, which was measured by X-ray absorption and diffraction on MnFe­(P,Si,B). The electronic redistribution is consistent with the formation of a covalent bond, resulting in a large drop in the Fe magnetic moments. The simultaneous change in bond length and strength, magnetism, and electron density provides the basis of the giant magnetocaloric effect. This new understanding of the mechanism of first order magneto-elastic phase transitions provides an essential step for new and improved magnetic refrigerants.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFj11LwzAYhYMoWKc_QegfSPe-b5o2vZQxP2AiyLwuaZpsHWszkg7x39ux4a1X5-LwHM7D2CNChkA41yZmZmv7Xo82ZEUDIFFdsQQlAZcAdM0SUFXJ81IWt-wuxh0ATqhK2HzpXGc6O4zpp_c9X9v-YIMej8GmC-_33bBJv7txm77rzWDHeM9unN5H-3DJGft6Xq4Xr3z18fK2eFpxLXIaeWlajUoRNYS5BFOUTUOAiiojCoGykhIBnFSgyEkgaVtsBYpGkTbCkJgxed41wccYrKsPoet1-KkR6pN1PVnXf9b1xXri8Myd6p0_hmF6-Q_zC9V4Xfo</recordid><startdate>20160726</startdate><enddate>20160726</enddate><creator>Boeije, M. F. J</creator><creator>Roy, P</creator><creator>Guillou, F</creator><creator>Yibole, H</creator><creator>Miao, X. F</creator><creator>Caron, L</creator><creator>Banerjee, D</creator><creator>van Dijk, N. H</creator><creator>de Groot, R. A</creator><creator>Brück, E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160726</creationdate><title>Efficient Room-Temperature Cooling with Magnets</title><author>Boeije, M. F. J ; Roy, P ; Guillou, F ; Yibole, H ; Miao, X. F ; Caron, L ; Banerjee, D ; van Dijk, N. H ; de Groot, R. A ; Brück, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7cda18822b21450c67bb201829c36315955100f58082f5025ed1d313b82ac3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boeije, M. F. J</creatorcontrib><creatorcontrib>Roy, P</creatorcontrib><creatorcontrib>Guillou, F</creatorcontrib><creatorcontrib>Yibole, H</creatorcontrib><creatorcontrib>Miao, X. F</creatorcontrib><creatorcontrib>Caron, L</creatorcontrib><creatorcontrib>Banerjee, D</creatorcontrib><creatorcontrib>van Dijk, N. H</creatorcontrib><creatorcontrib>de Groot, R. A</creatorcontrib><creatorcontrib>Brück, E</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boeije, M. F. J</au><au>Roy, P</au><au>Guillou, F</au><au>Yibole, H</au><au>Miao, X. F</au><au>Caron, L</au><au>Banerjee, D</au><au>van Dijk, N. H</au><au>de Groot, R. A</au><au>Brück, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Room-Temperature Cooling with Magnets</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2016-07-26</date><risdate>2016</risdate><volume>28</volume><issue>14</issue><spage>4901</spage><epage>4905</epage><pages>4901-4905</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Magnetic cooling is a highly efficient refrigeration technique with the potential to replace the traditional vapor compression cycle. It is based on the magnetocaloric effect, which is associated with the temperature change of a material when placed in a magnetic field. We present experimental evidence for the origin of the giant entropy change found in the most promising materials, in the form of an electronic reconstruction caused by the competition between magnetism and bonding. The effect manifests itself as a redistribution of the electron density, which was measured by X-ray absorption and diffraction on MnFe­(P,Si,B). The electronic redistribution is consistent with the formation of a covalent bond, resulting in a large drop in the Fe magnetic moments. The simultaneous change in bond length and strength, magnetism, and electron density provides the basis of the giant magnetocaloric effect. This new understanding of the mechanism of first order magneto-elastic phase transitions provides an essential step for new and improved magnetic refrigerants.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.6b00518</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2016-07, Vol.28 (14), p.4901-4905
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_6b00518
source American Chemical Society Journals
title Efficient Room-Temperature Cooling with Magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Room-Temperature%20Cooling%20with%20Magnets&rft.jtitle=Chemistry%20of%20materials&rft.au=Boeije,%20M.%20F.%20J&rft.date=2016-07-26&rft.volume=28&rft.issue=14&rft.spage=4901&rft.epage=4905&rft.pages=4901-4905&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.6b00518&rft_dat=%3Cacs_cross%3Ea958915394%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true