Role of Pressure in the Growth of Hexagonal Boron Nitride Thin Films from Ammonia-Borane

We analyze the optical, chemical, and electrical properties of chemical vapor deposition (CVD) grown hexagonal boron nitride (h-BN) using the precursor ammonia-borane (H3N–BH3) as a function of Ar/H2 background pressure (P TOT). Films grown at P TOT ≤ 2.0 Torr are uniform in thickness, highly crysta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-06, Vol.28 (12), p.4169-4179
Hauptverfasser: Koepke, Justin C, Wood, Joshua D, Chen, Yaofeng, Schmucker, Scott W, Liu, Ximeng, Chang, Noel N, Nienhaus, Lea, Do, Jae Won, Carrion, Enrique A, Hewaparakrama, Jayan, Rangarajan, Aniruddh, Datye, Isha, Mehta, Rushabh, Haasch, Richard T, Gruebele, Martin, Girolami, Gregory S, Pop, Eric, Lyding, Joseph W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the optical, chemical, and electrical properties of chemical vapor deposition (CVD) grown hexagonal boron nitride (h-BN) using the precursor ammonia-borane (H3N–BH3) as a function of Ar/H2 background pressure (P TOT). Films grown at P TOT ≤ 2.0 Torr are uniform in thickness, highly crystalline, and consist solely of h-BN. At larger P TOT, with constant precursor flow, the growth rate increases, but the resulting h-BN is more amorphous, disordered, and sp3-bonded. We attribute these changes in h-BN grown at high pressure to incomplete thermolysis of the H3N–BH3 precursor from a passivated Cu catalyst. A similar increase in h-BN growth rate and amorphization is observed even at low P TOT if the H3N–BH3 partial pressure is initially greater than the background pressure P TOT at the beginning of growth. h-BN growth using the H3N–BH3 precursor reproducibly can give large-area, crystalline h-BN thin films, provided that the total pressure is under 2.0 Torr and the precursor flux is well-controlled.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b00396