In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation

Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preserv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-10, Vol.36 (20), p.10285-10294
Hauptverfasser: Zhang, Xuegang, Yang, Lixue, Chen, Fei, Yan, Yinzhou, Li, Yiqiang, Zhang, You, Ma, Ying, Wan, Hancheng, Xue, Zhe, Wang, Qiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10294
container_issue 20
container_start_page 10285
container_title Chemistry of materials
container_volume 36
creator Zhang, Xuegang
Yang, Lixue
Chen, Fei
Yan, Yinzhou
Li, Yiqiang
Zhang, You
Ma, Ying
Wan, Hancheng
Xue, Zhe
Wang, Qiang
description Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against E. coli and S. aureus, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.
doi_str_mv 10.1021/acs.chemmater.4c02199
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_4c02199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a047655580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a173t-db2b2cd342d5c9bc9af387e8263f35254f19db51ce8f852c61d4d923335b70743</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIOQFpuYy6czsrKW1hUIFddPNkMnFps4kkmQq9RV8aVMsbl0d-A_ffw4fALcYjTAi-I6LMBJb1XU8Kj_KRcqq6gwMMCMoYwiRczBAZVVkecHGl-AqhB1COKHlAHwvLQwm9vD5YONWBROg03CjXGuiEXDZGcm_XJua4dzzTn06_55hfL-xa7hQ6Z4L0fci9l4FqJ2HM7vlVigJJzaazgjvGsNbOBHR7E08QG4lfDCudW9GpPwpccrveTTOXoMLzdugbk5zCF7ns5fpIlutH5fTySrjuKAxkw1piJA0J5KJqhEV17QsVEnGVFNGWK5xJRuGhSp1yYgYY5nLilBKWVOgIqdDwH5703MheKXrD2867g81RvXRaJ2M1n9G65PRxOFf7rjeud7b9OU_zA93NYH9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation</title><source>ACS Publications</source><creator>Zhang, Xuegang ; Yang, Lixue ; Chen, Fei ; Yan, Yinzhou ; Li, Yiqiang ; Zhang, You ; Ma, Ying ; Wan, Hancheng ; Xue, Zhe ; Wang, Qiang</creator><creatorcontrib>Zhang, Xuegang ; Yang, Lixue ; Chen, Fei ; Yan, Yinzhou ; Li, Yiqiang ; Zhang, You ; Ma, Ying ; Wan, Hancheng ; Xue, Zhe ; Wang, Qiang</creatorcontrib><description>Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against E. coli and S. aureus, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.4c02199</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2024-10, Vol.36 (20), p.10285-10294</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a173t-db2b2cd342d5c9bc9af387e8263f35254f19db51ce8f852c61d4d923335b70743</cites><orcidid>0000-0001-6853-1295 ; 0000-0002-8081-3655 ; 0000-0002-1969-7878 ; 0000-0002-2714-4042 ; 0000-0002-5525-744X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.4c02199$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.4c02199$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Xuegang</creatorcontrib><creatorcontrib>Yang, Lixue</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Yan, Yinzhou</creatorcontrib><creatorcontrib>Li, Yiqiang</creatorcontrib><creatorcontrib>Zhang, You</creatorcontrib><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Wan, Hancheng</creatorcontrib><creatorcontrib>Xue, Zhe</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><title>In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against E. coli and S. aureus, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIOQFpuYy6czsrKW1hUIFddPNkMnFps4kkmQq9RV8aVMsbl0d-A_ffw4fALcYjTAi-I6LMBJb1XU8Kj_KRcqq6gwMMCMoYwiRczBAZVVkecHGl-AqhB1COKHlAHwvLQwm9vD5YONWBROg03CjXGuiEXDZGcm_XJua4dzzTn06_55hfL-xa7hQ6Z4L0fci9l4FqJ2HM7vlVigJJzaazgjvGsNbOBHR7E08QG4lfDCudW9GpPwpccrveTTOXoMLzdugbk5zCF7ns5fpIlutH5fTySrjuKAxkw1piJA0J5KJqhEV17QsVEnGVFNGWK5xJRuGhSp1yYgYY5nLilBKWVOgIqdDwH5703MheKXrD2867g81RvXRaJ2M1n9G65PRxOFf7rjeud7b9OU_zA93NYH9</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Zhang, Xuegang</creator><creator>Yang, Lixue</creator><creator>Chen, Fei</creator><creator>Yan, Yinzhou</creator><creator>Li, Yiqiang</creator><creator>Zhang, You</creator><creator>Ma, Ying</creator><creator>Wan, Hancheng</creator><creator>Xue, Zhe</creator><creator>Wang, Qiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6853-1295</orcidid><orcidid>https://orcid.org/0000-0002-8081-3655</orcidid><orcidid>https://orcid.org/0000-0002-1969-7878</orcidid><orcidid>https://orcid.org/0000-0002-2714-4042</orcidid><orcidid>https://orcid.org/0000-0002-5525-744X</orcidid></search><sort><creationdate>20241022</creationdate><title>In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation</title><author>Zhang, Xuegang ; Yang, Lixue ; Chen, Fei ; Yan, Yinzhou ; Li, Yiqiang ; Zhang, You ; Ma, Ying ; Wan, Hancheng ; Xue, Zhe ; Wang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a173t-db2b2cd342d5c9bc9af387e8263f35254f19db51ce8f852c61d4d923335b70743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuegang</creatorcontrib><creatorcontrib>Yang, Lixue</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Yan, Yinzhou</creatorcontrib><creatorcontrib>Li, Yiqiang</creatorcontrib><creatorcontrib>Zhang, You</creatorcontrib><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Wan, Hancheng</creatorcontrib><creatorcontrib>Xue, Zhe</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuegang</au><au>Yang, Lixue</au><au>Chen, Fei</au><au>Yan, Yinzhou</au><au>Li, Yiqiang</au><au>Zhang, You</au><au>Ma, Ying</au><au>Wan, Hancheng</au><au>Xue, Zhe</au><au>Wang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>36</volume><issue>20</issue><spage>10285</spage><epage>10294</epage><pages>10285-10294</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against E. coli and S. aureus, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.4c02199</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6853-1295</orcidid><orcidid>https://orcid.org/0000-0002-8081-3655</orcidid><orcidid>https://orcid.org/0000-0002-1969-7878</orcidid><orcidid>https://orcid.org/0000-0002-2714-4042</orcidid><orcidid>https://orcid.org/0000-0002-5525-744X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-10, Vol.36 (20), p.10285-10294
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_4c02199
source ACS Publications
title In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20Synthesis%20of%20Zeolitic%20Imidazolate%20Framework-11@ZnO%20Heterostructures%20for%20Enhanced%20Antimicrobial%20Activity%20and%20Biological%20Preservation&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhang,%20Xuegang&rft.date=2024-10-22&rft.volume=36&rft.issue=20&rft.spage=10285&rft.epage=10294&rft.pages=10285-10294&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.4c02199&rft_dat=%3Cacs_cross%3Ea047655580%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true