Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes

The utilization of earth-abundant and high-capacity sulfur in solid-state batteries presents a promising strategy to circumvent the use of rare transition metals and enhance achievable specific energy. However, numerous challenges remain. The transport limitation within the cathode composite, partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2025-01, Vol.37 (1), p.109-118
Hauptverfasser: Yanagihara, Shoma, Huebner, Jan, Huang, Zheng, Inoishi, Atsushi, Akamatsu, Hirofumi, Hayashi, Katsuro, Ohno, Saneyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 109
container_title Chemistry of materials
container_volume 37
creator Yanagihara, Shoma
Huebner, Jan
Huang, Zheng
Inoishi, Atsushi
Akamatsu, Hirofumi
Hayashi, Katsuro
Ohno, Saneyuki
description The utilization of earth-abundant and high-capacity sulfur in solid-state batteries presents a promising strategy to circumvent the use of rare transition metals and enhance achievable specific energy. However, numerous challenges remain. The transport limitation within the cathode composite, particularly with sulfide electrolytes during charging, has been identified as a major degradation mechanism in solid-state Li–S batteries. This degradation is linked to electrolyte oxidation and a concomitant reduction in the effective ionic conductivity of the cathode composite. Inspired by the sufficiently high oxidation stability of halide-based electrolytes, we investigated their compatibility with solid-state Li–S batteries in this work. The electrochemical stability of halides in contact with conductive additives, the stability window of fast ion transport in the composite electrodes, and chemical compatibility with sulfur-active materials (e.g., S and Li2S), in addition to the cyclability of the halide-based composite electrodes, are explored. Three halides were employed as model electrolytes: Li3InCl6, Li3YCl6, and Li3YBr6. Despite its high oxidation stability, Li3InCl6 exhibited rapid degradation due to electrolyte reduction. The composite with Li3YCl6 lost its capacity because of chemical incompatibility, especially with Li2S, resulting in the formation of LiYS2 at the interface. In contrast, Li3YBr6 demonstrated superior performance, maintaining a capacity of 1100 mAh gS –1 for 20 cycles (normalized to the sulfur content in the cathode material). This study elucidates the degradation mechanisms of halide-based solid-state Li–S batteries and proposes potential design strategies to mitigate chemical incompatibility issues.
doi_str_mv 10.1021/acs.chemmater.4c02159
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_4c02159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c796172732</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-f6d9b0410f17e55b0edc59a250c54a47dbd10840fa357e452ee5bf41f19f4cd03</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPIOQFtk7SpNs96lJtseChel6yyYSm7DYliYe9-Q6-oU9iSotXTwP_8M0_fITcM5gw4OxB6TjRW-x7lTBMhM6ZrC7IiEkOhQTgl2QE86osRCln1-Qmxh0Ay-h8RF5r3x9Ucq3rXBqot3SpOmeQLjrUKfhuSBip29ONz3GxSbmDrt3P1_eGPqmUCwdaq7T1BuMtubKqi3h3nmPy8bx4r5fF-u1lVT-uC8U5pMLOTNWCYGBZiVK2gEbLSnEJWgolStMaBnMBVk1liUJyRNlawSyrrNAGpmMiT3d18DEGtM0huF6FoWHQHI002UjzZ6Q5G8kcO3HH9c5_hn3-8h_mFwaqapY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes</title><source>ACS Publications</source><creator>Yanagihara, Shoma ; Huebner, Jan ; Huang, Zheng ; Inoishi, Atsushi ; Akamatsu, Hirofumi ; Hayashi, Katsuro ; Ohno, Saneyuki</creator><creatorcontrib>Yanagihara, Shoma ; Huebner, Jan ; Huang, Zheng ; Inoishi, Atsushi ; Akamatsu, Hirofumi ; Hayashi, Katsuro ; Ohno, Saneyuki</creatorcontrib><description>The utilization of earth-abundant and high-capacity sulfur in solid-state batteries presents a promising strategy to circumvent the use of rare transition metals and enhance achievable specific energy. However, numerous challenges remain. The transport limitation within the cathode composite, particularly with sulfide electrolytes during charging, has been identified as a major degradation mechanism in solid-state Li–S batteries. This degradation is linked to electrolyte oxidation and a concomitant reduction in the effective ionic conductivity of the cathode composite. Inspired by the sufficiently high oxidation stability of halide-based electrolytes, we investigated their compatibility with solid-state Li–S batteries in this work. The electrochemical stability of halides in contact with conductive additives, the stability window of fast ion transport in the composite electrodes, and chemical compatibility with sulfur-active materials (e.g., S and Li2S), in addition to the cyclability of the halide-based composite electrodes, are explored. Three halides were employed as model electrolytes: Li3InCl6, Li3YCl6, and Li3YBr6. Despite its high oxidation stability, Li3InCl6 exhibited rapid degradation due to electrolyte reduction. The composite with Li3YCl6 lost its capacity because of chemical incompatibility, especially with Li2S, resulting in the formation of LiYS2 at the interface. In contrast, Li3YBr6 demonstrated superior performance, maintaining a capacity of 1100 mAh gS –1 for 20 cycles (normalized to the sulfur content in the cathode material). This study elucidates the degradation mechanisms of halide-based solid-state Li–S batteries and proposes potential design strategies to mitigate chemical incompatibility issues.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.4c02159</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2025-01, Vol.37 (1), p.109-118</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-f6d9b0410f17e55b0edc59a250c54a47dbd10840fa357e452ee5bf41f19f4cd03</cites><orcidid>0000-0001-8192-996X ; 0000-0002-4413-6511 ; 0000-0003-2867-2127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.4c02159$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.4c02159$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yanagihara, Shoma</creatorcontrib><creatorcontrib>Huebner, Jan</creatorcontrib><creatorcontrib>Huang, Zheng</creatorcontrib><creatorcontrib>Inoishi, Atsushi</creatorcontrib><creatorcontrib>Akamatsu, Hirofumi</creatorcontrib><creatorcontrib>Hayashi, Katsuro</creatorcontrib><creatorcontrib>Ohno, Saneyuki</creatorcontrib><title>Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The utilization of earth-abundant and high-capacity sulfur in solid-state batteries presents a promising strategy to circumvent the use of rare transition metals and enhance achievable specific energy. However, numerous challenges remain. The transport limitation within the cathode composite, particularly with sulfide electrolytes during charging, has been identified as a major degradation mechanism in solid-state Li–S batteries. This degradation is linked to electrolyte oxidation and a concomitant reduction in the effective ionic conductivity of the cathode composite. Inspired by the sufficiently high oxidation stability of halide-based electrolytes, we investigated their compatibility with solid-state Li–S batteries in this work. The electrochemical stability of halides in contact with conductive additives, the stability window of fast ion transport in the composite electrodes, and chemical compatibility with sulfur-active materials (e.g., S and Li2S), in addition to the cyclability of the halide-based composite electrodes, are explored. Three halides were employed as model electrolytes: Li3InCl6, Li3YCl6, and Li3YBr6. Despite its high oxidation stability, Li3InCl6 exhibited rapid degradation due to electrolyte reduction. The composite with Li3YCl6 lost its capacity because of chemical incompatibility, especially with Li2S, resulting in the formation of LiYS2 at the interface. In contrast, Li3YBr6 demonstrated superior performance, maintaining a capacity of 1100 mAh gS –1 for 20 cycles (normalized to the sulfur content in the cathode material). This study elucidates the degradation mechanisms of halide-based solid-state Li–S batteries and proposes potential design strategies to mitigate chemical incompatibility issues.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPIOQFtk7SpNs96lJtseChel6yyYSm7DYliYe9-Q6-oU9iSotXTwP_8M0_fITcM5gw4OxB6TjRW-x7lTBMhM6ZrC7IiEkOhQTgl2QE86osRCln1-Qmxh0Ay-h8RF5r3x9Ucq3rXBqot3SpOmeQLjrUKfhuSBip29ONz3GxSbmDrt3P1_eGPqmUCwdaq7T1BuMtubKqi3h3nmPy8bx4r5fF-u1lVT-uC8U5pMLOTNWCYGBZiVK2gEbLSnEJWgolStMaBnMBVk1liUJyRNlawSyrrNAGpmMiT3d18DEGtM0huF6FoWHQHI002UjzZ6Q5G8kcO3HH9c5_hn3-8h_mFwaqapY</recordid><startdate>20250114</startdate><enddate>20250114</enddate><creator>Yanagihara, Shoma</creator><creator>Huebner, Jan</creator><creator>Huang, Zheng</creator><creator>Inoishi, Atsushi</creator><creator>Akamatsu, Hirofumi</creator><creator>Hayashi, Katsuro</creator><creator>Ohno, Saneyuki</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8192-996X</orcidid><orcidid>https://orcid.org/0000-0002-4413-6511</orcidid><orcidid>https://orcid.org/0000-0003-2867-2127</orcidid></search><sort><creationdate>20250114</creationdate><title>Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes</title><author>Yanagihara, Shoma ; Huebner, Jan ; Huang, Zheng ; Inoishi, Atsushi ; Akamatsu, Hirofumi ; Hayashi, Katsuro ; Ohno, Saneyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-f6d9b0410f17e55b0edc59a250c54a47dbd10840fa357e452ee5bf41f19f4cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanagihara, Shoma</creatorcontrib><creatorcontrib>Huebner, Jan</creatorcontrib><creatorcontrib>Huang, Zheng</creatorcontrib><creatorcontrib>Inoishi, Atsushi</creatorcontrib><creatorcontrib>Akamatsu, Hirofumi</creatorcontrib><creatorcontrib>Hayashi, Katsuro</creatorcontrib><creatorcontrib>Ohno, Saneyuki</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanagihara, Shoma</au><au>Huebner, Jan</au><au>Huang, Zheng</au><au>Inoishi, Atsushi</au><au>Akamatsu, Hirofumi</au><au>Hayashi, Katsuro</au><au>Ohno, Saneyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2025-01-14</date><risdate>2025</risdate><volume>37</volume><issue>1</issue><spage>109</spage><epage>118</epage><pages>109-118</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The utilization of earth-abundant and high-capacity sulfur in solid-state batteries presents a promising strategy to circumvent the use of rare transition metals and enhance achievable specific energy. However, numerous challenges remain. The transport limitation within the cathode composite, particularly with sulfide electrolytes during charging, has been identified as a major degradation mechanism in solid-state Li–S batteries. This degradation is linked to electrolyte oxidation and a concomitant reduction in the effective ionic conductivity of the cathode composite. Inspired by the sufficiently high oxidation stability of halide-based electrolytes, we investigated their compatibility with solid-state Li–S batteries in this work. The electrochemical stability of halides in contact with conductive additives, the stability window of fast ion transport in the composite electrodes, and chemical compatibility with sulfur-active materials (e.g., S and Li2S), in addition to the cyclability of the halide-based composite electrodes, are explored. Three halides were employed as model electrolytes: Li3InCl6, Li3YCl6, and Li3YBr6. Despite its high oxidation stability, Li3InCl6 exhibited rapid degradation due to electrolyte reduction. The composite with Li3YCl6 lost its capacity because of chemical incompatibility, especially with Li2S, resulting in the formation of LiYS2 at the interface. In contrast, Li3YBr6 demonstrated superior performance, maintaining a capacity of 1100 mAh gS –1 for 20 cycles (normalized to the sulfur content in the cathode material). This study elucidates the degradation mechanisms of halide-based solid-state Li–S batteries and proposes potential design strategies to mitigate chemical incompatibility issues.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.4c02159</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8192-996X</orcidid><orcidid>https://orcid.org/0000-0002-4413-6511</orcidid><orcidid>https://orcid.org/0000-0003-2867-2127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2025-01, Vol.37 (1), p.109-118
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_4c02159
source ACS Publications
title Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compatibility%20of%20Halide%20Electrolytes%20in%20Solid-State%20Li%E2%80%93S%20Battery%20Cathodes&rft.jtitle=Chemistry%20of%20materials&rft.au=Yanagihara,%20Shoma&rft.date=2025-01-14&rft.volume=37&rft.issue=1&rft.spage=109&rft.epage=118&rft.pages=109-118&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.4c02159&rft_dat=%3Cacs_cross%3Ec796172732%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true