Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase

Biofilms appear when bacteria colonize a surface and synthesize and assemble extracellular matrix components. In addition to the organic matrix, some biofilms precipitate mineral particles such as calcium phosphate. While calcified biofilms induce diseases like periodontitis in physiological environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2023-04, Vol.35 (7), p.2762-2772
Hauptverfasser: Zorzetto, Laura, Scoppola, Ernesto, Raguin, Emeline, Blank, Kerstin G., Fratzl, Peter, Bidan, Cécile M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2772
container_issue 7
container_start_page 2762
container_title Chemistry of materials
container_volume 35
creator Zorzetto, Laura
Scoppola, Ernesto
Raguin, Emeline
Blank, Kerstin G.
Fratzl, Peter
Bidan, Cécile M.
description Biofilms appear when bacteria colonize a surface and synthesize and assemble extracellular matrix components. In addition to the organic matrix, some biofilms precipitate mineral particles such as calcium phosphate. While calcified biofilms induce diseases like periodontitis in physiological environments, they also inspire the engineering of living composites. Understanding mineralization mechanisms in biofilms will thus provide key knowledge for either inhibiting or promoting mineralization in these research fields. In this work, we study the mineralization of Escherichia coli biofilms using the strain E. coli K-12 W3110, known to produce an amyloid-based fibrous matrix. We first identify the mineralization conditions of biofilms grown on nutritive agar substrates supplemented with calcium ions and β-glycerophosphate. We then localize the mineral phase at different scales using light and scanning electron microscopy in wet conditions as well as X-ray microtomography. Wide-angle X-ray scattering enables us to further identify the mineral as being hydroxyapatite. Considering the major role played by the enzyme alkaline phosphatase (ALP) in calcium phosphate precipitation in mammalian bone tissue, we further test if periplasmic ALP expressed from the phoA gene in E. coli is involved in biofilm mineralization. We show that E. coli biofilms grown on mineralizing medium supplemented with an ALP inhibitor undergo less and delayed mineralization and that purified ALP deposited on mineralizing medium is sufficient to induce mineralization. These results suggest that also bacterial ALP, expressed in E. coli biofilms, can promote mineralization. Overall, knowledge about hydroxyapatite mineralization in E. coli biofilms will benefit the development of strategies against diseases involving calcified biofilms as well as the engineering of biofilm-based living composites.
doi_str_mv 10.1021/acs.chemmater.2c02969
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_2c02969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c769540074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-11464c800a790b20e6730eaaab6e2be2dda2c7893d523068346ec58efd656a593</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_Qcgf6EzSJm0ftzHdYKKIPpe79JZmdslIOnA--NtN2fDVpwvn3nPu4SPknrMJZ4I_gA4T3eJuBz36idBMlKq8ICMuBUskY-KSjFhR5kmWS3VNbkLYMsajtRiRn5WtDxpr-mwseujMN_TGWeoaujzW3n0dYR-VHqmxdBHiG290a4Bq1xk6M64x3S5QsDXtW6SvrkfbG-jom-twSJmBjq0GZdp9xnwbj1oX9i30EPCWXDXQBbw7zzH5eFy8z5fJ-uVpNZ-uExCl7BPOM5XpgjHIS7YRDFWeMgSAjUKxQVHXIHRelGktRcpUkWYKtSywqZVUIMt0TOQpV3sXgsem2nuzA3-sOKsGiFWEWP1BrM4Qo4-ffMN66w7expb_eH4Bx2N8vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase</title><source>American Chemical Society Journals</source><creator>Zorzetto, Laura ; Scoppola, Ernesto ; Raguin, Emeline ; Blank, Kerstin G. ; Fratzl, Peter ; Bidan, Cécile M.</creator><creatorcontrib>Zorzetto, Laura ; Scoppola, Ernesto ; Raguin, Emeline ; Blank, Kerstin G. ; Fratzl, Peter ; Bidan, Cécile M.</creatorcontrib><description>Biofilms appear when bacteria colonize a surface and synthesize and assemble extracellular matrix components. In addition to the organic matrix, some biofilms precipitate mineral particles such as calcium phosphate. While calcified biofilms induce diseases like periodontitis in physiological environments, they also inspire the engineering of living composites. Understanding mineralization mechanisms in biofilms will thus provide key knowledge for either inhibiting or promoting mineralization in these research fields. In this work, we study the mineralization of Escherichia coli biofilms using the strain E. coli K-12 W3110, known to produce an amyloid-based fibrous matrix. We first identify the mineralization conditions of biofilms grown on nutritive agar substrates supplemented with calcium ions and β-glycerophosphate. We then localize the mineral phase at different scales using light and scanning electron microscopy in wet conditions as well as X-ray microtomography. Wide-angle X-ray scattering enables us to further identify the mineral as being hydroxyapatite. Considering the major role played by the enzyme alkaline phosphatase (ALP) in calcium phosphate precipitation in mammalian bone tissue, we further test if periplasmic ALP expressed from the phoA gene in E. coli is involved in biofilm mineralization. We show that E. coli biofilms grown on mineralizing medium supplemented with an ALP inhibitor undergo less and delayed mineralization and that purified ALP deposited on mineralizing medium is sufficient to induce mineralization. These results suggest that also bacterial ALP, expressed in E. coli biofilms, can promote mineralization. Overall, knowledge about hydroxyapatite mineralization in E. coli biofilms will benefit the development of strategies against diseases involving calcified biofilms as well as the engineering of biofilm-based living composites.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c02969</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2023-04, Vol.35 (7), p.2762-2772</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-11464c800a790b20e6730eaaab6e2be2dda2c7893d523068346ec58efd656a593</citedby><cites>FETCH-LOGICAL-a295t-11464c800a790b20e6730eaaab6e2be2dda2c7893d523068346ec58efd656a593</cites><orcidid>0000-0001-5410-6984 ; 0000-0002-6390-052X ; 0000-0002-6243-562X ; 0000-0003-4437-7830 ; 0000-0003-3126-5741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.2c02969$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c02969$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zorzetto, Laura</creatorcontrib><creatorcontrib>Scoppola, Ernesto</creatorcontrib><creatorcontrib>Raguin, Emeline</creatorcontrib><creatorcontrib>Blank, Kerstin G.</creatorcontrib><creatorcontrib>Fratzl, Peter</creatorcontrib><creatorcontrib>Bidan, Cécile M.</creatorcontrib><title>Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Biofilms appear when bacteria colonize a surface and synthesize and assemble extracellular matrix components. In addition to the organic matrix, some biofilms precipitate mineral particles such as calcium phosphate. While calcified biofilms induce diseases like periodontitis in physiological environments, they also inspire the engineering of living composites. Understanding mineralization mechanisms in biofilms will thus provide key knowledge for either inhibiting or promoting mineralization in these research fields. In this work, we study the mineralization of Escherichia coli biofilms using the strain E. coli K-12 W3110, known to produce an amyloid-based fibrous matrix. We first identify the mineralization conditions of biofilms grown on nutritive agar substrates supplemented with calcium ions and β-glycerophosphate. We then localize the mineral phase at different scales using light and scanning electron microscopy in wet conditions as well as X-ray microtomography. Wide-angle X-ray scattering enables us to further identify the mineral as being hydroxyapatite. Considering the major role played by the enzyme alkaline phosphatase (ALP) in calcium phosphate precipitation in mammalian bone tissue, we further test if periplasmic ALP expressed from the phoA gene in E. coli is involved in biofilm mineralization. We show that E. coli biofilms grown on mineralizing medium supplemented with an ALP inhibitor undergo less and delayed mineralization and that purified ALP deposited on mineralizing medium is sufficient to induce mineralization. These results suggest that also bacterial ALP, expressed in E. coli biofilms, can promote mineralization. Overall, knowledge about hydroxyapatite mineralization in E. coli biofilms will benefit the development of strategies against diseases involving calcified biofilms as well as the engineering of biofilm-based living composites.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_Qcgf6EzSJm0ftzHdYKKIPpe79JZmdslIOnA--NtN2fDVpwvn3nPu4SPknrMJZ4I_gA4T3eJuBz36idBMlKq8ICMuBUskY-KSjFhR5kmWS3VNbkLYMsajtRiRn5WtDxpr-mwseujMN_TGWeoaujzW3n0dYR-VHqmxdBHiG290a4Bq1xk6M64x3S5QsDXtW6SvrkfbG-jom-twSJmBjq0GZdp9xnwbj1oX9i30EPCWXDXQBbw7zzH5eFy8z5fJ-uVpNZ-uExCl7BPOM5XpgjHIS7YRDFWeMgSAjUKxQVHXIHRelGktRcpUkWYKtSywqZVUIMt0TOQpV3sXgsem2nuzA3-sOKsGiFWEWP1BrM4Qo4-ffMN66w7expb_eH4Bx2N8vg</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Zorzetto, Laura</creator><creator>Scoppola, Ernesto</creator><creator>Raguin, Emeline</creator><creator>Blank, Kerstin G.</creator><creator>Fratzl, Peter</creator><creator>Bidan, Cécile M.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5410-6984</orcidid><orcidid>https://orcid.org/0000-0002-6390-052X</orcidid><orcidid>https://orcid.org/0000-0002-6243-562X</orcidid><orcidid>https://orcid.org/0000-0003-4437-7830</orcidid><orcidid>https://orcid.org/0000-0003-3126-5741</orcidid></search><sort><creationdate>20230411</creationdate><title>Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase</title><author>Zorzetto, Laura ; Scoppola, Ernesto ; Raguin, Emeline ; Blank, Kerstin G. ; Fratzl, Peter ; Bidan, Cécile M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-11464c800a790b20e6730eaaab6e2be2dda2c7893d523068346ec58efd656a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zorzetto, Laura</creatorcontrib><creatorcontrib>Scoppola, Ernesto</creatorcontrib><creatorcontrib>Raguin, Emeline</creatorcontrib><creatorcontrib>Blank, Kerstin G.</creatorcontrib><creatorcontrib>Fratzl, Peter</creatorcontrib><creatorcontrib>Bidan, Cécile M.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zorzetto, Laura</au><au>Scoppola, Ernesto</au><au>Raguin, Emeline</au><au>Blank, Kerstin G.</au><au>Fratzl, Peter</au><au>Bidan, Cécile M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>2762</spage><epage>2772</epage><pages>2762-2772</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Biofilms appear when bacteria colonize a surface and synthesize and assemble extracellular matrix components. In addition to the organic matrix, some biofilms precipitate mineral particles such as calcium phosphate. While calcified biofilms induce diseases like periodontitis in physiological environments, they also inspire the engineering of living composites. Understanding mineralization mechanisms in biofilms will thus provide key knowledge for either inhibiting or promoting mineralization in these research fields. In this work, we study the mineralization of Escherichia coli biofilms using the strain E. coli K-12 W3110, known to produce an amyloid-based fibrous matrix. We first identify the mineralization conditions of biofilms grown on nutritive agar substrates supplemented with calcium ions and β-glycerophosphate. We then localize the mineral phase at different scales using light and scanning electron microscopy in wet conditions as well as X-ray microtomography. Wide-angle X-ray scattering enables us to further identify the mineral as being hydroxyapatite. Considering the major role played by the enzyme alkaline phosphatase (ALP) in calcium phosphate precipitation in mammalian bone tissue, we further test if periplasmic ALP expressed from the phoA gene in E. coli is involved in biofilm mineralization. We show that E. coli biofilms grown on mineralizing medium supplemented with an ALP inhibitor undergo less and delayed mineralization and that purified ALP deposited on mineralizing medium is sufficient to induce mineralization. These results suggest that also bacterial ALP, expressed in E. coli biofilms, can promote mineralization. Overall, knowledge about hydroxyapatite mineralization in E. coli biofilms will benefit the development of strategies against diseases involving calcified biofilms as well as the engineering of biofilm-based living composites.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c02969</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5410-6984</orcidid><orcidid>https://orcid.org/0000-0002-6390-052X</orcidid><orcidid>https://orcid.org/0000-0002-6243-562X</orcidid><orcidid>https://orcid.org/0000-0003-4437-7830</orcidid><orcidid>https://orcid.org/0000-0003-3126-5741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2023-04, Vol.35 (7), p.2762-2772
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_2c02969
source American Chemical Society Journals
title Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20Mineralization%20of%20Hydroxyapatite%20in%20Escherichia%20coli%20Biofilms%20and%20the%20Potential%20Role%20of%20Bacterial%20Alkaline%20Phosphatase&rft.jtitle=Chemistry%20of%20materials&rft.au=Zorzetto,%20Laura&rft.date=2023-04-11&rft.volume=35&rft.issue=7&rft.spage=2762&rft.epage=2772&rft.pages=2762-2772&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c02969&rft_dat=%3Cacs_cross%3Ec769540074%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true