Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage
Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocom...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2022-03, Vol.34 (5), p.2333-2341 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2341 |
---|---|
container_issue | 5 |
container_start_page | 2333 |
container_title | Chemistry of materials |
container_volume | 34 |
creator | Zhou, Chenyi Xu, Wenhan Zhang, Bing Zhang, Yunhe Shen, Chen Xu, Qinfei Liu, Xin Bertram, Florian Bernholc, Jerzy Jiang, Zhenhua Shang, Yingshuang Zhang, Haibo |
description | Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications. |
doi_str_mv | 10.1021/acs.chemmater.1c04220 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_1c04220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e28760504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_QegfyMxNkzZ9lDKdIDpwPpc0vdk613XctEL_vZ0bvvp0Hg7f4fAxdg9iBkLCg3Vh5jbYNLZDmoETSkpxwSagpeBaCHnJJsJkKVepTq7ZTQhbIWBEzYS95T3tBr607gur6KOj3nU9YbRsd0ODFCLfUrSo1xu-wuaAZH_b3B6sq7v6G6P5Hmk9jGRLdo237MrbXcC7c07Z59N8lS_46_vzS_74ym2sZMdNWgHGJZpSeu2skapyNkukdqVPygSUqkArkNZ5yMA7Y0B4BS7O0vF1FsdTpk-7jtoQCH1xoLqxNBQgiqOUYpRS_EkpzlJGDk7csd62Pe3Hl_8wP_ycasw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</title><source>American Chemical Society Journals</source><creator>Zhou, Chenyi ; Xu, Wenhan ; Zhang, Bing ; Zhang, Yunhe ; Shen, Chen ; Xu, Qinfei ; Liu, Xin ; Bertram, Florian ; Bernholc, Jerzy ; Jiang, Zhenhua ; Shang, Yingshuang ; Zhang, Haibo</creator><creatorcontrib>Zhou, Chenyi ; Xu, Wenhan ; Zhang, Bing ; Zhang, Yunhe ; Shen, Chen ; Xu, Qinfei ; Liu, Xin ; Bertram, Florian ; Bernholc, Jerzy ; Jiang, Zhenhua ; Shang, Yingshuang ; Zhang, Haibo</creatorcontrib><description>Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c04220</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2022-03, Vol.34 (5), p.2333-2341</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</citedby><cites>FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</cites><orcidid>0000-0001-8483-6486 ; 0000-0002-9981-8851 ; 0000-0002-4347-2601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c04220$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c04220$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhou, Chenyi</creatorcontrib><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Zhang, Yunhe</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Xu, Qinfei</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Bertram, Florian</creatorcontrib><creatorcontrib>Bernholc, Jerzy</creatorcontrib><creatorcontrib>Jiang, Zhenhua</creatorcontrib><creatorcontrib>Shang, Yingshuang</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><title>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_QegfyMxNkzZ9lDKdIDpwPpc0vdk613XctEL_vZ0bvvp0Hg7f4fAxdg9iBkLCg3Vh5jbYNLZDmoETSkpxwSagpeBaCHnJJsJkKVepTq7ZTQhbIWBEzYS95T3tBr607gur6KOj3nU9YbRsd0ODFCLfUrSo1xu-wuaAZH_b3B6sq7v6G6P5Hmk9jGRLdo237MrbXcC7c07Z59N8lS_46_vzS_74ym2sZMdNWgHGJZpSeu2skapyNkukdqVPygSUqkArkNZ5yMA7Y0B4BS7O0vF1FsdTpk-7jtoQCH1xoLqxNBQgiqOUYpRS_EkpzlJGDk7csd62Pe3Hl_8wP_ycasw</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Zhou, Chenyi</creator><creator>Xu, Wenhan</creator><creator>Zhang, Bing</creator><creator>Zhang, Yunhe</creator><creator>Shen, Chen</creator><creator>Xu, Qinfei</creator><creator>Liu, Xin</creator><creator>Bertram, Florian</creator><creator>Bernholc, Jerzy</creator><creator>Jiang, Zhenhua</creator><creator>Shang, Yingshuang</creator><creator>Zhang, Haibo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8483-6486</orcidid><orcidid>https://orcid.org/0000-0002-9981-8851</orcidid><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid></search><sort><creationdate>20220308</creationdate><title>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</title><author>Zhou, Chenyi ; Xu, Wenhan ; Zhang, Bing ; Zhang, Yunhe ; Shen, Chen ; Xu, Qinfei ; Liu, Xin ; Bertram, Florian ; Bernholc, Jerzy ; Jiang, Zhenhua ; Shang, Yingshuang ; Zhang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chenyi</creatorcontrib><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Zhang, Yunhe</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Xu, Qinfei</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Bertram, Florian</creatorcontrib><creatorcontrib>Bernholc, Jerzy</creatorcontrib><creatorcontrib>Jiang, Zhenhua</creatorcontrib><creatorcontrib>Shang, Yingshuang</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chenyi</au><au>Xu, Wenhan</au><au>Zhang, Bing</au><au>Zhang, Yunhe</au><au>Shen, Chen</au><au>Xu, Qinfei</au><au>Liu, Xin</au><au>Bertram, Florian</au><au>Bernholc, Jerzy</au><au>Jiang, Zhenhua</au><au>Shang, Yingshuang</au><au>Zhang, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>2333</spage><epage>2341</epage><pages>2333-2341</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c04220</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8483-6486</orcidid><orcidid>https://orcid.org/0000-0002-9981-8851</orcidid><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2022-03, Vol.34 (5), p.2333-2341 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_1c04220 |
source | American Chemical Society Journals |
title | Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curly-Packed%20Structure%20Polymers%20for%20High-Temperature%20Capacitive%20Energy%20Storage&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhou,%20Chenyi&rft.date=2022-03-08&rft.volume=34&rft.issue=5&rft.spage=2333&rft.epage=2341&rft.pages=2333-2341&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c04220&rft_dat=%3Cacs_cross%3Ee28760504%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |