Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage

Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-03, Vol.34 (5), p.2333-2341
Hauptverfasser: Zhou, Chenyi, Xu, Wenhan, Zhang, Bing, Zhang, Yunhe, Shen, Chen, Xu, Qinfei, Liu, Xin, Bertram, Florian, Bernholc, Jerzy, Jiang, Zhenhua, Shang, Yingshuang, Zhang, Haibo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2341
container_issue 5
container_start_page 2333
container_title Chemistry of materials
container_volume 34
creator Zhou, Chenyi
Xu, Wenhan
Zhang, Bing
Zhang, Yunhe
Shen, Chen
Xu, Qinfei
Liu, Xin
Bertram, Florian
Bernholc, Jerzy
Jiang, Zhenhua
Shang, Yingshuang
Zhang, Haibo
description Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly­(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.
doi_str_mv 10.1021/acs.chemmater.1c04220
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_1c04220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e28760504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_QegfyMxNkzZ9lDKdIDpwPpc0vdk613XctEL_vZ0bvvp0Hg7f4fAxdg9iBkLCg3Vh5jbYNLZDmoETSkpxwSagpeBaCHnJJsJkKVepTq7ZTQhbIWBEzYS95T3tBr607gur6KOj3nU9YbRsd0ODFCLfUrSo1xu-wuaAZH_b3B6sq7v6G6P5Hmk9jGRLdo237MrbXcC7c07Z59N8lS_46_vzS_74ym2sZMdNWgHGJZpSeu2skapyNkukdqVPygSUqkArkNZ5yMA7Y0B4BS7O0vF1FsdTpk-7jtoQCH1xoLqxNBQgiqOUYpRS_EkpzlJGDk7csd62Pe3Hl_8wP_ycasw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</title><source>American Chemical Society Journals</source><creator>Zhou, Chenyi ; Xu, Wenhan ; Zhang, Bing ; Zhang, Yunhe ; Shen, Chen ; Xu, Qinfei ; Liu, Xin ; Bertram, Florian ; Bernholc, Jerzy ; Jiang, Zhenhua ; Shang, Yingshuang ; Zhang, Haibo</creator><creatorcontrib>Zhou, Chenyi ; Xu, Wenhan ; Zhang, Bing ; Zhang, Yunhe ; Shen, Chen ; Xu, Qinfei ; Liu, Xin ; Bertram, Florian ; Bernholc, Jerzy ; Jiang, Zhenhua ; Shang, Yingshuang ; Zhang, Haibo</creatorcontrib><description>Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly­(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c04220</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2022-03, Vol.34 (5), p.2333-2341</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</citedby><cites>FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</cites><orcidid>0000-0001-8483-6486 ; 0000-0002-9981-8851 ; 0000-0002-4347-2601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c04220$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c04220$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhou, Chenyi</creatorcontrib><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Zhang, Yunhe</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Xu, Qinfei</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Bertram, Florian</creatorcontrib><creatorcontrib>Bernholc, Jerzy</creatorcontrib><creatorcontrib>Jiang, Zhenhua</creatorcontrib><creatorcontrib>Shang, Yingshuang</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><title>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly­(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_QegfyMxNkzZ9lDKdIDpwPpc0vdk613XctEL_vZ0bvvp0Hg7f4fAxdg9iBkLCg3Vh5jbYNLZDmoETSkpxwSagpeBaCHnJJsJkKVepTq7ZTQhbIWBEzYS95T3tBr607gur6KOj3nU9YbRsd0ODFCLfUrSo1xu-wuaAZH_b3B6sq7v6G6P5Hmk9jGRLdo237MrbXcC7c07Z59N8lS_46_vzS_74ym2sZMdNWgHGJZpSeu2skapyNkukdqVPygSUqkArkNZ5yMA7Y0B4BS7O0vF1FsdTpk-7jtoQCH1xoLqxNBQgiqOUYpRS_EkpzlJGDk7csd62Pe3Hl_8wP_ycasw</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Zhou, Chenyi</creator><creator>Xu, Wenhan</creator><creator>Zhang, Bing</creator><creator>Zhang, Yunhe</creator><creator>Shen, Chen</creator><creator>Xu, Qinfei</creator><creator>Liu, Xin</creator><creator>Bertram, Florian</creator><creator>Bernholc, Jerzy</creator><creator>Jiang, Zhenhua</creator><creator>Shang, Yingshuang</creator><creator>Zhang, Haibo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8483-6486</orcidid><orcidid>https://orcid.org/0000-0002-9981-8851</orcidid><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid></search><sort><creationdate>20220308</creationdate><title>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</title><author>Zhou, Chenyi ; Xu, Wenhan ; Zhang, Bing ; Zhang, Yunhe ; Shen, Chen ; Xu, Qinfei ; Liu, Xin ; Bertram, Florian ; Bernholc, Jerzy ; Jiang, Zhenhua ; Shang, Yingshuang ; Zhang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-87d1e3be8b2f5ca824dca9625cbf6b6144d15412acf191fc8810f41c397028933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chenyi</creatorcontrib><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Zhang, Yunhe</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Xu, Qinfei</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Bertram, Florian</creatorcontrib><creatorcontrib>Bernholc, Jerzy</creatorcontrib><creatorcontrib>Jiang, Zhenhua</creatorcontrib><creatorcontrib>Shang, Yingshuang</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chenyi</au><au>Xu, Wenhan</au><au>Zhang, Bing</au><au>Zhang, Yunhe</au><au>Shen, Chen</au><au>Xu, Qinfei</au><au>Liu, Xin</au><au>Bertram, Florian</au><au>Bernholc, Jerzy</au><au>Jiang, Zhenhua</au><au>Shang, Yingshuang</au><au>Zhang, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>2333</spage><epage>2341</epage><pages>2333-2341</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Polymer film capacitors are ubiquitous in modern electronics and electric systems, but the relatively low working temperatures of polymer dielectrics limit their application in next-generation capacitors. The currently reported high-temperature polymer dielectrics rely on the construction of nanocomposites with wide band gap fillers and cross-linked networks to achieve high breakdown strength and high efficiencies. However, generating the optimal chain structure with intrinsic great high-temperature capacitive properties using a one-component polymer is still challenging. Herein, a giant discharged energy density in neat polymer has been demonstrated in a series of linear poly­(arylene ether amide) (PNFA) at 150 °C, which greatly surpass all the current free-standing dielectric polymer films measured in 10 Hz. The maximum discharged energy density with efficiency above 90% of the PNFA is 2.7 J cm–3, which is about 3 times that of the state-of-the-art commercial high-temperature polymer films. The architectures of the amorphous polymers have been identified by synchrotron X-ray diffraction combined with density functional theory calculations. The origins of superior high-temperature capacitive properties are traced to the increased packing density by the curly-packed chain structure. In addition, the reported polymer could be produced using existing industrial-grade processes, which are economical and practical for large-scale applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c04220</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8483-6486</orcidid><orcidid>https://orcid.org/0000-0002-9981-8851</orcidid><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2022-03, Vol.34 (5), p.2333-2341
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_1c04220
source American Chemical Society Journals
title Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curly-Packed%20Structure%20Polymers%20for%20High-Temperature%20Capacitive%20Energy%20Storage&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhou,%20Chenyi&rft.date=2022-03-08&rft.volume=34&rft.issue=5&rft.spage=2333&rft.epage=2341&rft.pages=2333-2341&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c04220&rft_dat=%3Cacs_cross%3Ee28760504%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true