Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design
The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a ta...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2021-12, Vol.33 (23), p.9326-9333 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9333 |
---|---|
container_issue | 23 |
container_start_page | 9326 |
container_title | Chemistry of materials |
container_volume | 33 |
creator | Afik, Noa Shreteh, Karam Fridman, Helena Volokh, Michael Ezersky, Vladimir Mokari, Taleb |
description | The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures. |
doi_str_mv | 10.1021/acs.chemmater.1c03129 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_1c03129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c280319026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EEqVwBCRfIGVsx3G8rFr-pEIXwDpyEoe6ShPwOILuuAM35CS4asWW1YxmvjfSPEIuGUwYcHZlKpxUK7vZmGD9hFUgGNdHZMQkh0QC8GMyglyrJFUyOyVniGsAFtF8RNZPfTsE13c_X98L9z64OjZx5mp66_uPsKJ9Q5edTeZuYzuMQdPSBxtMmyw_XW3po-l6DH6owuAt0imiw2BrWm7pzMTYFgOdW3Sv3Tk5aUyL9uJQx-Tl5vp5dpcslrf3s-kiMVzLkOQgBFNga1GCycpaNqpJ80ylRvNMVwKMFkpLXWoulRDaQspFWWkhS50blYoxkfu7le8RvW2KN-82xm8LBsVOWBGFFX_CioOwyLE9t1uv-8HHV_Ef5hfoWXZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</title><source>ACS Publications</source><creator>Afik, Noa ; Shreteh, Karam ; Fridman, Helena ; Volokh, Michael ; Ezersky, Vladimir ; Mokari, Taleb</creator><creatorcontrib>Afik, Noa ; Shreteh, Karam ; Fridman, Helena ; Volokh, Michael ; Ezersky, Vladimir ; Mokari, Taleb</creatorcontrib><description>The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c03129</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-12, Vol.33 (23), p.9326-9333</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</citedby><cites>FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</cites><orcidid>0000-0002-1448-0397 ; 0000-0001-8510-9336 ; 0000-0001-7712-1589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c03129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c03129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Afik, Noa</creatorcontrib><creatorcontrib>Shreteh, Karam</creatorcontrib><creatorcontrib>Fridman, Helena</creatorcontrib><creatorcontrib>Volokh, Michael</creatorcontrib><creatorcontrib>Ezersky, Vladimir</creatorcontrib><creatorcontrib>Mokari, Taleb</creatorcontrib><title>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQRi0EEqVwBCRfIGVsx3G8rFr-pEIXwDpyEoe6ShPwOILuuAM35CS4asWW1YxmvjfSPEIuGUwYcHZlKpxUK7vZmGD9hFUgGNdHZMQkh0QC8GMyglyrJFUyOyVniGsAFtF8RNZPfTsE13c_X98L9z64OjZx5mp66_uPsKJ9Q5edTeZuYzuMQdPSBxtMmyw_XW3po-l6DH6owuAt0imiw2BrWm7pzMTYFgOdW3Sv3Tk5aUyL9uJQx-Tl5vp5dpcslrf3s-kiMVzLkOQgBFNga1GCycpaNqpJ80ylRvNMVwKMFkpLXWoulRDaQspFWWkhS50blYoxkfu7le8RvW2KN-82xm8LBsVOWBGFFX_CioOwyLE9t1uv-8HHV_Ef5hfoWXZT</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Afik, Noa</creator><creator>Shreteh, Karam</creator><creator>Fridman, Helena</creator><creator>Volokh, Michael</creator><creator>Ezersky, Vladimir</creator><creator>Mokari, Taleb</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1448-0397</orcidid><orcidid>https://orcid.org/0000-0001-8510-9336</orcidid><orcidid>https://orcid.org/0000-0001-7712-1589</orcidid></search><sort><creationdate>20211214</creationdate><title>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</title><author>Afik, Noa ; Shreteh, Karam ; Fridman, Helena ; Volokh, Michael ; Ezersky, Vladimir ; Mokari, Taleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afik, Noa</creatorcontrib><creatorcontrib>Shreteh, Karam</creatorcontrib><creatorcontrib>Fridman, Helena</creatorcontrib><creatorcontrib>Volokh, Michael</creatorcontrib><creatorcontrib>Ezersky, Vladimir</creatorcontrib><creatorcontrib>Mokari, Taleb</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afik, Noa</au><au>Shreteh, Karam</au><au>Fridman, Helena</au><au>Volokh, Michael</au><au>Ezersky, Vladimir</au><au>Mokari, Taleb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>33</volume><issue>23</issue><spage>9326</spage><epage>9333</epage><pages>9326-9333</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c03129</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1448-0397</orcidid><orcidid>https://orcid.org/0000-0001-8510-9336</orcidid><orcidid>https://orcid.org/0000-0001-7712-1589</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2021-12, Vol.33 (23), p.9326-9333 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_1c03129 |
source | ACS Publications |
title | Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%E2%80%93Liquid%E2%80%93Solid%20Growth%20of%20One-Dimensional%20Metal-Oxide%20Nanostructures%20Assisted%20by%20Catalyst%20Design&rft.jtitle=Chemistry%20of%20materials&rft.au=Afik,%20Noa&rft.date=2021-12-14&rft.volume=33&rft.issue=23&rft.spage=9326&rft.epage=9333&rft.pages=9326-9333&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c03129&rft_dat=%3Cacs_cross%3Ec280319026%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |