Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design

The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-12, Vol.33 (23), p.9326-9333
Hauptverfasser: Afik, Noa, Shreteh, Karam, Fridman, Helena, Volokh, Michael, Ezersky, Vladimir, Mokari, Taleb
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9333
container_issue 23
container_start_page 9326
container_title Chemistry of materials
container_volume 33
creator Afik, Noa
Shreteh, Karam
Fridman, Helena
Volokh, Michael
Ezersky, Vladimir
Mokari, Taleb
description The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.
doi_str_mv 10.1021/acs.chemmater.1c03129
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_1c03129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c280319026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EEqVwBCRfIGVsx3G8rFr-pEIXwDpyEoe6ShPwOILuuAM35CS4asWW1YxmvjfSPEIuGUwYcHZlKpxUK7vZmGD9hFUgGNdHZMQkh0QC8GMyglyrJFUyOyVniGsAFtF8RNZPfTsE13c_X98L9z64OjZx5mp66_uPsKJ9Q5edTeZuYzuMQdPSBxtMmyw_XW3po-l6DH6owuAt0imiw2BrWm7pzMTYFgOdW3Sv3Tk5aUyL9uJQx-Tl5vp5dpcslrf3s-kiMVzLkOQgBFNga1GCycpaNqpJ80ylRvNMVwKMFkpLXWoulRDaQspFWWkhS50blYoxkfu7le8RvW2KN-82xm8LBsVOWBGFFX_CioOwyLE9t1uv-8HHV_Ef5hfoWXZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</title><source>ACS Publications</source><creator>Afik, Noa ; Shreteh, Karam ; Fridman, Helena ; Volokh, Michael ; Ezersky, Vladimir ; Mokari, Taleb</creator><creatorcontrib>Afik, Noa ; Shreteh, Karam ; Fridman, Helena ; Volokh, Michael ; Ezersky, Vladimir ; Mokari, Taleb</creatorcontrib><description>The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c03129</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-12, Vol.33 (23), p.9326-9333</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</citedby><cites>FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</cites><orcidid>0000-0002-1448-0397 ; 0000-0001-8510-9336 ; 0000-0001-7712-1589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c03129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c03129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Afik, Noa</creatorcontrib><creatorcontrib>Shreteh, Karam</creatorcontrib><creatorcontrib>Fridman, Helena</creatorcontrib><creatorcontrib>Volokh, Michael</creatorcontrib><creatorcontrib>Ezersky, Vladimir</creatorcontrib><creatorcontrib>Mokari, Taleb</creatorcontrib><title>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQRi0EEqVwBCRfIGVsx3G8rFr-pEIXwDpyEoe6ShPwOILuuAM35CS4asWW1YxmvjfSPEIuGUwYcHZlKpxUK7vZmGD9hFUgGNdHZMQkh0QC8GMyglyrJFUyOyVniGsAFtF8RNZPfTsE13c_X98L9z64OjZx5mp66_uPsKJ9Q5edTeZuYzuMQdPSBxtMmyw_XW3po-l6DH6owuAt0imiw2BrWm7pzMTYFgOdW3Sv3Tk5aUyL9uJQx-Tl5vp5dpcslrf3s-kiMVzLkOQgBFNga1GCycpaNqpJ80ylRvNMVwKMFkpLXWoulRDaQspFWWkhS50blYoxkfu7le8RvW2KN-82xm8LBsVOWBGFFX_CioOwyLE9t1uv-8HHV_Ef5hfoWXZT</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Afik, Noa</creator><creator>Shreteh, Karam</creator><creator>Fridman, Helena</creator><creator>Volokh, Michael</creator><creator>Ezersky, Vladimir</creator><creator>Mokari, Taleb</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1448-0397</orcidid><orcidid>https://orcid.org/0000-0001-8510-9336</orcidid><orcidid>https://orcid.org/0000-0001-7712-1589</orcidid></search><sort><creationdate>20211214</creationdate><title>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</title><author>Afik, Noa ; Shreteh, Karam ; Fridman, Helena ; Volokh, Michael ; Ezersky, Vladimir ; Mokari, Taleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-8033170ed3b0a6bd5f7f48674a9269c30a937959b9257339e0423bc935b98a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afik, Noa</creatorcontrib><creatorcontrib>Shreteh, Karam</creatorcontrib><creatorcontrib>Fridman, Helena</creatorcontrib><creatorcontrib>Volokh, Michael</creatorcontrib><creatorcontrib>Ezersky, Vladimir</creatorcontrib><creatorcontrib>Mokari, Taleb</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afik, Noa</au><au>Shreteh, Karam</au><au>Fridman, Helena</au><au>Volokh, Michael</au><au>Ezersky, Vladimir</au><au>Mokari, Taleb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>33</volume><issue>23</issue><spage>9326</spage><epage>9333</epage><pages>9326-9333</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The solution–liquid–solid (SLS) mechanism is a well-established method for forming one-dimensional (1D) nanostructures in a solution. Herein, an SLS mechanism is explored for the formation of metal oxides for the first time. Two key synthetic achievements allow this synthesis: (i) the design of a tailored catalyst with a low melting point and high stability and (ii) control over the reactivity and the oxidation of the precursors. Once these conditions are achieved, the SLS growth of indium and tin oxides ensues. Structural characterization of the products at various stages of the growth confirms the formation of 1D In2O3 and SnO2 nanoscale heterostructures using AuIn2 and Au7Sn3 as catalysts. Furthermore, SLS growth was easily adopted to insert SnO2 rods selectively between two domains of an Au/ZnO heterodimer, demonstrating the potential of achieving highly complex multicomponent metal-oxide nanostructures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c03129</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1448-0397</orcidid><orcidid>https://orcid.org/0000-0001-8510-9336</orcidid><orcidid>https://orcid.org/0000-0001-7712-1589</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-12, Vol.33 (23), p.9326-9333
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_1c03129
source ACS Publications
title Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%E2%80%93Liquid%E2%80%93Solid%20Growth%20of%20One-Dimensional%20Metal-Oxide%20Nanostructures%20Assisted%20by%20Catalyst%20Design&rft.jtitle=Chemistry%20of%20materials&rft.au=Afik,%20Noa&rft.date=2021-12-14&rft.volume=33&rft.issue=23&rft.spage=9326&rft.epage=9333&rft.pages=9326-9333&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c03129&rft_dat=%3Cacs_cross%3Ec280319026%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true