Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions

Biological tissues are capable of stiffening and self-healing as they are strained or damaged in order to preserve their integrity and functionalities. However, mimicking both strain-stiffening and self-healing functions of biological tissues in biocompatible flexible hydrogels remains a challenge....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-12, Vol.32 (24), p.10545-10555
Hauptverfasser: Wang, Wenda, Xiang, Li, Diaz-Dussan, Diana, Zhang, Jiawen, Yang, Wenshuai, Gong, Lu, Chen, Jingsi, Narain, Ravin, Zeng, Hongbo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10555
container_issue 24
container_start_page 10545
container_title Chemistry of materials
container_volume 32
creator Wang, Wenda
Xiang, Li
Diaz-Dussan, Diana
Zhang, Jiawen
Yang, Wenshuai
Gong, Lu
Chen, Jingsi
Narain, Ravin
Zeng, Hongbo
description Biological tissues are capable of stiffening and self-healing as they are strained or damaged in order to preserve their integrity and functionalities. However, mimicking both strain-stiffening and self-healing functions of biological tissues in biocompatible flexible hydrogels remains a challenge. Here, we report a flexible hydrogel constructed by two biocompatible polymers, which can smartly adopt biological strain-stiffening or self-healing strategy to maintain the structural integrity and functionalities in response to mechanical deformation. The hydrogel can be reversibly and repeatedly stiffened up to eight times of its original modulus as it is strained, without showing mechanical hysteresis. Besides, the damaged hydrogel can repeatedly self-heal within seconds and fully retains the strain-stiffening capability. In addition, benefitting from the excellent biocompatibility and dynamic nature, the biomimetic hydrogel can be facilely applied for 3D cell encapsulation. This work provides novel insights into the molecular design of tissue-like self-protective soft materials, which may also inspire the development of biomimetic cell culture matrices, artificial tissues, as well as soft machines and robotics for various biomedical and engineering applications.
doi_str_mv 10.1021/acs.chemmater.0c03526
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_0c03526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c874300203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-11da79e2c06c434619840b0dcce441fc35db093ae9b4eaab8ea7ccf332e91cdf3</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKuPIOQFtk6y_5dabSsUFax4uWRnZ9u02Y0kW2vf3i0t3no1B4bvcPgYuxUwEiDFnUI_whU1jerIjQAhjGVyxgYilhDEAPKcDSDL0yBK4-SSXXm_BhA9mg3Y5-O-VY1GPjH0o0tDfLavnF2S4S_U7azb8J3uVvxBW2OXGpXhC-39lgKjN8TfydTBm7MdYae_iU-2bR9s66_ZRa2Mp5vTHbKPydNiPAvmr9Pn8f08UDKPu0CISqU5SYQEozBKRJ5FUEKFSFEkagzjqoQ8VJSXESlVZqRSxDoMJeUCqzocsvjYi85676guvpxulNsXAoqDnaK3U_zZKU52ek4cucN7bbeu7Vf-w_wC-BZvkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions</title><source>ACS Publications</source><creator>Wang, Wenda ; Xiang, Li ; Diaz-Dussan, Diana ; Zhang, Jiawen ; Yang, Wenshuai ; Gong, Lu ; Chen, Jingsi ; Narain, Ravin ; Zeng, Hongbo</creator><creatorcontrib>Wang, Wenda ; Xiang, Li ; Diaz-Dussan, Diana ; Zhang, Jiawen ; Yang, Wenshuai ; Gong, Lu ; Chen, Jingsi ; Narain, Ravin ; Zeng, Hongbo</creatorcontrib><description>Biological tissues are capable of stiffening and self-healing as they are strained or damaged in order to preserve their integrity and functionalities. However, mimicking both strain-stiffening and self-healing functions of biological tissues in biocompatible flexible hydrogels remains a challenge. Here, we report a flexible hydrogel constructed by two biocompatible polymers, which can smartly adopt biological strain-stiffening or self-healing strategy to maintain the structural integrity and functionalities in response to mechanical deformation. The hydrogel can be reversibly and repeatedly stiffened up to eight times of its original modulus as it is strained, without showing mechanical hysteresis. Besides, the damaged hydrogel can repeatedly self-heal within seconds and fully retains the strain-stiffening capability. In addition, benefitting from the excellent biocompatibility and dynamic nature, the biomimetic hydrogel can be facilely applied for 3D cell encapsulation. This work provides novel insights into the molecular design of tissue-like self-protective soft materials, which may also inspire the development of biomimetic cell culture matrices, artificial tissues, as well as soft machines and robotics for various biomedical and engineering applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c03526</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-12, Vol.32 (24), p.10545-10555</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-11da79e2c06c434619840b0dcce441fc35db093ae9b4eaab8ea7ccf332e91cdf3</citedby><cites>FETCH-LOGICAL-a295t-11da79e2c06c434619840b0dcce441fc35db093ae9b4eaab8ea7ccf332e91cdf3</cites><orcidid>0000-0003-3004-5536 ; 0000-0003-0947-9719 ; 0000-0002-7101-8967 ; 0000-0003-1778-3964 ; 0000-0002-1432-5979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c03526$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c03526$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Wang, Wenda</creatorcontrib><creatorcontrib>Xiang, Li</creatorcontrib><creatorcontrib>Diaz-Dussan, Diana</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Yang, Wenshuai</creatorcontrib><creatorcontrib>Gong, Lu</creatorcontrib><creatorcontrib>Chen, Jingsi</creatorcontrib><creatorcontrib>Narain, Ravin</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><title>Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Biological tissues are capable of stiffening and self-healing as they are strained or damaged in order to preserve their integrity and functionalities. However, mimicking both strain-stiffening and self-healing functions of biological tissues in biocompatible flexible hydrogels remains a challenge. Here, we report a flexible hydrogel constructed by two biocompatible polymers, which can smartly adopt biological strain-stiffening or self-healing strategy to maintain the structural integrity and functionalities in response to mechanical deformation. The hydrogel can be reversibly and repeatedly stiffened up to eight times of its original modulus as it is strained, without showing mechanical hysteresis. Besides, the damaged hydrogel can repeatedly self-heal within seconds and fully retains the strain-stiffening capability. In addition, benefitting from the excellent biocompatibility and dynamic nature, the biomimetic hydrogel can be facilely applied for 3D cell encapsulation. This work provides novel insights into the molecular design of tissue-like self-protective soft materials, which may also inspire the development of biomimetic cell culture matrices, artificial tissues, as well as soft machines and robotics for various biomedical and engineering applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKuPIOQFtk6y_5dabSsUFax4uWRnZ9u02Y0kW2vf3i0t3no1B4bvcPgYuxUwEiDFnUI_whU1jerIjQAhjGVyxgYilhDEAPKcDSDL0yBK4-SSXXm_BhA9mg3Y5-O-VY1GPjH0o0tDfLavnF2S4S_U7azb8J3uVvxBW2OXGpXhC-39lgKjN8TfydTBm7MdYae_iU-2bR9s66_ZRa2Mp5vTHbKPydNiPAvmr9Pn8f08UDKPu0CISqU5SYQEozBKRJ5FUEKFSFEkagzjqoQ8VJSXESlVZqRSxDoMJeUCqzocsvjYi85676guvpxulNsXAoqDnaK3U_zZKU52ek4cucN7bbeu7Vf-w_wC-BZvkg</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Wang, Wenda</creator><creator>Xiang, Li</creator><creator>Diaz-Dussan, Diana</creator><creator>Zhang, Jiawen</creator><creator>Yang, Wenshuai</creator><creator>Gong, Lu</creator><creator>Chen, Jingsi</creator><creator>Narain, Ravin</creator><creator>Zeng, Hongbo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3004-5536</orcidid><orcidid>https://orcid.org/0000-0003-0947-9719</orcidid><orcidid>https://orcid.org/0000-0002-7101-8967</orcidid><orcidid>https://orcid.org/0000-0003-1778-3964</orcidid><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid></search><sort><creationdate>20201222</creationdate><title>Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions</title><author>Wang, Wenda ; Xiang, Li ; Diaz-Dussan, Diana ; Zhang, Jiawen ; Yang, Wenshuai ; Gong, Lu ; Chen, Jingsi ; Narain, Ravin ; Zeng, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-11da79e2c06c434619840b0dcce441fc35db093ae9b4eaab8ea7ccf332e91cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenda</creatorcontrib><creatorcontrib>Xiang, Li</creatorcontrib><creatorcontrib>Diaz-Dussan, Diana</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Yang, Wenshuai</creatorcontrib><creatorcontrib>Gong, Lu</creatorcontrib><creatorcontrib>Chen, Jingsi</creatorcontrib><creatorcontrib>Narain, Ravin</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenda</au><au>Xiang, Li</au><au>Diaz-Dussan, Diana</au><au>Zhang, Jiawen</au><au>Yang, Wenshuai</au><au>Gong, Lu</au><au>Chen, Jingsi</au><au>Narain, Ravin</au><au>Zeng, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>32</volume><issue>24</issue><spage>10545</spage><epage>10555</epage><pages>10545-10555</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Biological tissues are capable of stiffening and self-healing as they are strained or damaged in order to preserve their integrity and functionalities. However, mimicking both strain-stiffening and self-healing functions of biological tissues in biocompatible flexible hydrogels remains a challenge. Here, we report a flexible hydrogel constructed by two biocompatible polymers, which can smartly adopt biological strain-stiffening or self-healing strategy to maintain the structural integrity and functionalities in response to mechanical deformation. The hydrogel can be reversibly and repeatedly stiffened up to eight times of its original modulus as it is strained, without showing mechanical hysteresis. Besides, the damaged hydrogel can repeatedly self-heal within seconds and fully retains the strain-stiffening capability. In addition, benefitting from the excellent biocompatibility and dynamic nature, the biomimetic hydrogel can be facilely applied for 3D cell encapsulation. This work provides novel insights into the molecular design of tissue-like self-protective soft materials, which may also inspire the development of biomimetic cell culture matrices, artificial tissues, as well as soft machines and robotics for various biomedical and engineering applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c03526</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3004-5536</orcidid><orcidid>https://orcid.org/0000-0003-0947-9719</orcidid><orcidid>https://orcid.org/0000-0002-7101-8967</orcidid><orcidid>https://orcid.org/0000-0003-1778-3964</orcidid><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-12, Vol.32 (24), p.10545-10555
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_0c03526
source ACS Publications
title Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Flexible%20Hydrogel%20Network%20with%20Biological%20Tissue-like%20Self-Protective%20Functions&rft.jtitle=Chemistry%20of%20materials&rft.au=Wang,%20Wenda&rft.date=2020-12-22&rft.volume=32&rft.issue=24&rft.spage=10545&rft.epage=10555&rft.pages=10545-10555&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c03526&rft_dat=%3Cacs_cross%3Ec874300203%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true