Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials
Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2020-09, Vol.32 (18), p.7822-7831 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!