Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials

Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-09, Vol.32 (18), p.7822-7831
Hauptverfasser: Korolev, Vadim V, Mitrofanov, Artem, Marchenko, Ekaterina I, Eremin, Nickolay N, Tkachenko, Valery, Kalmykov, Stepan N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!