Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials
Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2020-09, Vol.32 (18), p.7822-7831 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7831 |
---|---|
container_issue | 18 |
container_start_page | 7822 |
container_title | Chemistry of materials |
container_volume | 32 |
creator | Korolev, Vadim V Mitrofanov, Artem Marchenko, Ekaterina I Eremin, Nickolay N Tkachenko, Valery Kalmykov, Stepan N |
description | Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database. |
doi_str_mv | 10.1021/acs.chemmater.0c02468 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_0c02468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d223469268</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_Qcgf6EzSJu0ex5xO2PRlPpfb9GbLaJORdOL-vRkOX306XM49h8NHyCNnE84EfwIdJ3qHfQ8DhgnTTBSquiIjLgXLJGPimoxYNS2zopTqltzFuGeMp2g1It0mgIsGAzQdUnAtXXwP6KI9n2vQO-uQrhCCs26bPWOwX9jS2eB7q-l8B2GLkRof6Nq32KUfujw1wbb0HZw_-OCPMdWkXRa6eE9uTBJ8uOiYfL4sNvNltvp4fZvPVhmIqRwyaBSXbSmkqZg2uTKm0grKUhdKl9IUIp-CLg0UyWFVbnIoJG_yFlCYxgiVj4n87dXBxxjQ1IdgewinmrP6jKxOyOo_ZPUFWcrx39zZ3vtjcGnlP5kfYfN24A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</title><source>American Chemical Society Journals</source><creator>Korolev, Vadim V ; Mitrofanov, Artem ; Marchenko, Ekaterina I ; Eremin, Nickolay N ; Tkachenko, Valery ; Kalmykov, Stepan N</creator><creatorcontrib>Korolev, Vadim V ; Mitrofanov, Artem ; Marchenko, Ekaterina I ; Eremin, Nickolay N ; Tkachenko, Valery ; Kalmykov, Stepan N</creatorcontrib><description>Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c02468</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-09, Vol.32 (18), p.7822-7831</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</citedby><cites>FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</cites><orcidid>0000-0001-8891-6862 ; 0000-0001-6117-5662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c02468$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c02468$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Korolev, Vadim V</creatorcontrib><creatorcontrib>Mitrofanov, Artem</creatorcontrib><creatorcontrib>Marchenko, Ekaterina I</creatorcontrib><creatorcontrib>Eremin, Nickolay N</creatorcontrib><creatorcontrib>Tkachenko, Valery</creatorcontrib><creatorcontrib>Kalmykov, Stepan N</creatorcontrib><title>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_Qcgf6EzSJu0ex5xO2PRlPpfb9GbLaJORdOL-vRkOX306XM49h8NHyCNnE84EfwIdJ3qHfQ8DhgnTTBSquiIjLgXLJGPimoxYNS2zopTqltzFuGeMp2g1It0mgIsGAzQdUnAtXXwP6KI9n2vQO-uQrhCCs26bPWOwX9jS2eB7q-l8B2GLkRof6Nq32KUfujw1wbb0HZw_-OCPMdWkXRa6eE9uTBJ8uOiYfL4sNvNltvp4fZvPVhmIqRwyaBSXbSmkqZg2uTKm0grKUhdKl9IUIp-CLg0UyWFVbnIoJG_yFlCYxgiVj4n87dXBxxjQ1IdgewinmrP6jKxOyOo_ZPUFWcrx39zZ3vtjcGnlP5kfYfN24A</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Korolev, Vadim V</creator><creator>Mitrofanov, Artem</creator><creator>Marchenko, Ekaterina I</creator><creator>Eremin, Nickolay N</creator><creator>Tkachenko, Valery</creator><creator>Kalmykov, Stepan N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8891-6862</orcidid><orcidid>https://orcid.org/0000-0001-6117-5662</orcidid></search><sort><creationdate>20200922</creationdate><title>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</title><author>Korolev, Vadim V ; Mitrofanov, Artem ; Marchenko, Ekaterina I ; Eremin, Nickolay N ; Tkachenko, Valery ; Kalmykov, Stepan N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korolev, Vadim V</creatorcontrib><creatorcontrib>Mitrofanov, Artem</creatorcontrib><creatorcontrib>Marchenko, Ekaterina I</creatorcontrib><creatorcontrib>Eremin, Nickolay N</creatorcontrib><creatorcontrib>Tkachenko, Valery</creatorcontrib><creatorcontrib>Kalmykov, Stepan N</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korolev, Vadim V</au><au>Mitrofanov, Artem</au><au>Marchenko, Ekaterina I</au><au>Eremin, Nickolay N</au><au>Tkachenko, Valery</au><au>Kalmykov, Stepan N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>32</volume><issue>18</issue><spage>7822</spage><epage>7831</epage><pages>7822-7831</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c02468</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8891-6862</orcidid><orcidid>https://orcid.org/0000-0001-6117-5662</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2020-09, Vol.32 (18), p.7822-7831 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_0c02468 |
source | American Chemical Society Journals |
title | Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transferable%20and%20Extensible%20Machine%20Learning-Derived%20Atomic%20Charges%20for%20Modeling%20Hybrid%20Nanoporous%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Korolev,%20Vadim%20V&rft.date=2020-09-22&rft.volume=32&rft.issue=18&rft.spage=7822&rft.epage=7831&rft.pages=7822-7831&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c02468&rft_dat=%3Cacs_cross%3Ed223469268%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |