Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials

Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-09, Vol.32 (18), p.7822-7831
Hauptverfasser: Korolev, Vadim V, Mitrofanov, Artem, Marchenko, Ekaterina I, Eremin, Nickolay N, Tkachenko, Valery, Kalmykov, Stepan N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7831
container_issue 18
container_start_page 7822
container_title Chemistry of materials
container_volume 32
creator Korolev, Vadim V
Mitrofanov, Artem
Marchenko, Ekaterina I
Eremin, Nickolay N
Tkachenko, Valery
Kalmykov, Stepan N
description Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.
doi_str_mv 10.1021/acs.chemmater.0c02468
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_0c02468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d223469268</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_Qcgf6EzSJu0ex5xO2PRlPpfb9GbLaJORdOL-vRkOX306XM49h8NHyCNnE84EfwIdJ3qHfQ8DhgnTTBSquiIjLgXLJGPimoxYNS2zopTqltzFuGeMp2g1It0mgIsGAzQdUnAtXXwP6KI9n2vQO-uQrhCCs26bPWOwX9jS2eB7q-l8B2GLkRof6Nq32KUfujw1wbb0HZw_-OCPMdWkXRa6eE9uTBJ8uOiYfL4sNvNltvp4fZvPVhmIqRwyaBSXbSmkqZg2uTKm0grKUhdKl9IUIp-CLg0UyWFVbnIoJG_yFlCYxgiVj4n87dXBxxjQ1IdgewinmrP6jKxOyOo_ZPUFWcrx39zZ3vtjcGnlP5kfYfN24A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</title><source>American Chemical Society Journals</source><creator>Korolev, Vadim V ; Mitrofanov, Artem ; Marchenko, Ekaterina I ; Eremin, Nickolay N ; Tkachenko, Valery ; Kalmykov, Stepan N</creator><creatorcontrib>Korolev, Vadim V ; Mitrofanov, Artem ; Marchenko, Ekaterina I ; Eremin, Nickolay N ; Tkachenko, Valery ; Kalmykov, Stepan N</creatorcontrib><description>Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c02468</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-09, Vol.32 (18), p.7822-7831</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</citedby><cites>FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</cites><orcidid>0000-0001-8891-6862 ; 0000-0001-6117-5662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c02468$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c02468$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Korolev, Vadim V</creatorcontrib><creatorcontrib>Mitrofanov, Artem</creatorcontrib><creatorcontrib>Marchenko, Ekaterina I</creatorcontrib><creatorcontrib>Eremin, Nickolay N</creatorcontrib><creatorcontrib>Tkachenko, Valery</creatorcontrib><creatorcontrib>Kalmykov, Stepan N</creatorcontrib><title>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_Qcgf6EzSJu0ex5xO2PRlPpfb9GbLaJORdOL-vRkOX306XM49h8NHyCNnE84EfwIdJ3qHfQ8DhgnTTBSquiIjLgXLJGPimoxYNS2zopTqltzFuGeMp2g1It0mgIsGAzQdUnAtXXwP6KI9n2vQO-uQrhCCs26bPWOwX9jS2eB7q-l8B2GLkRof6Nq32KUfujw1wbb0HZw_-OCPMdWkXRa6eE9uTBJ8uOiYfL4sNvNltvp4fZvPVhmIqRwyaBSXbSmkqZg2uTKm0grKUhdKl9IUIp-CLg0UyWFVbnIoJG_yFlCYxgiVj4n87dXBxxjQ1IdgewinmrP6jKxOyOo_ZPUFWcrx39zZ3vtjcGnlP5kfYfN24A</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Korolev, Vadim V</creator><creator>Mitrofanov, Artem</creator><creator>Marchenko, Ekaterina I</creator><creator>Eremin, Nickolay N</creator><creator>Tkachenko, Valery</creator><creator>Kalmykov, Stepan N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8891-6862</orcidid><orcidid>https://orcid.org/0000-0001-6117-5662</orcidid></search><sort><creationdate>20200922</creationdate><title>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</title><author>Korolev, Vadim V ; Mitrofanov, Artem ; Marchenko, Ekaterina I ; Eremin, Nickolay N ; Tkachenko, Valery ; Kalmykov, Stepan N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-ab615d725f80cf36ff8c6a77c46c75f4239ac7fa46ff083f3a451b3dae2fbf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korolev, Vadim V</creatorcontrib><creatorcontrib>Mitrofanov, Artem</creatorcontrib><creatorcontrib>Marchenko, Ekaterina I</creatorcontrib><creatorcontrib>Eremin, Nickolay N</creatorcontrib><creatorcontrib>Tkachenko, Valery</creatorcontrib><creatorcontrib>Kalmykov, Stepan N</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korolev, Vadim V</au><au>Mitrofanov, Artem</au><au>Marchenko, Ekaterina I</au><au>Eremin, Nickolay N</au><au>Tkachenko, Valery</au><au>Kalmykov, Stepan N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>32</volume><issue>18</issue><spage>7822</spage><epage>7831</epage><pages>7822-7831</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal–organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c02468</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8891-6862</orcidid><orcidid>https://orcid.org/0000-0001-6117-5662</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-09, Vol.32 (18), p.7822-7831
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_0c02468
source American Chemical Society Journals
title Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transferable%20and%20Extensible%20Machine%20Learning-Derived%20Atomic%20Charges%20for%20Modeling%20Hybrid%20Nanoporous%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Korolev,%20Vadim%20V&rft.date=2020-09-22&rft.volume=32&rft.issue=18&rft.spage=7822&rft.epage=7831&rft.pages=7822-7831&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c02468&rft_dat=%3Cacs_cross%3Ed223469268%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true