Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations

Two-dimensional (2D) Ti3C2T x MXene has shown great potential in the energy storage field, and its performance strongly depends on the intercalation of cations. Therefore, engineering its interlayer ion channels is the key to enhance the electrochemical performance of Ti3C2T x , but it is challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-10, Vol.32 (19), p.8257-8265
Hauptverfasser: Guo, Miao, Geng, Wen-Chao, Liu, Chengbin, Gu, Jiayun, Zhang, Zezhong, Tang, Yanhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8265
container_issue 19
container_start_page 8257
container_title Chemistry of materials
container_volume 32
creator Guo, Miao
Geng, Wen-Chao
Liu, Chengbin
Gu, Jiayun
Zhang, Zezhong
Tang, Yanhong
description Two-dimensional (2D) Ti3C2T x MXene has shown great potential in the energy storage field, and its performance strongly depends on the intercalation of cations. Therefore, engineering its interlayer ion channels is the key to enhance the electrochemical performance of Ti3C2T x , but it is challenging due to the restacking nature of 2D materials. Herein, an original strategy for in situ introduction of large-size and electrostatic −SO4 termination is developed to engineer Ti3C2T x MXene interlayer channels. The chemical binding and steric effect of −SO4 termination ensure a stable and expanded interlayer ion channel. The electrostatic effect of −SO4 benefits electrolyte ion infiltration. Consequently, the capacitance of Ti3C2T x is increased by approximately 66 and 143% compared to those synthesized by common methods. The Ti3C2T x electrode exhibits a high areal capacitance of 1399.0 mF cm–2 at 1 mV s–1, excellent rate capability, and ultralong cycle life without capacitance loss after 17,200 cycles. The all-solid-state supercapacitor (ASSS) based on the Ti3C2T x delivers an ultrahigh areal capacitance of 391.5 mF cm–2, which reaches the state-of-the-art level. Moreover, the ASSS shows excellent flexibility and wearable potential. The established strategy blazes a new trail to improve the capacitance performance of MXenes.
doi_str_mv 10.1021/acs.chemmater.0c02026
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_0c02026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a002760491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-6422e3ce04b2640576946974cae3daf0e16ef6e1c52372b66fb6a2bf678a40c13</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKuPIOQFtk6y2ezWu1JaK1S8sAXvltl04m7Zn5JE0Lc3pdVbr-bAmW_mcBi7FzARIMUDGj8xNXUdBnITMCBB6gs2EpmEJAOQl2wExTRPVJ7pa3bj_R5ARLQYsf22DQ7r5qPmM0fY8jke0DQBe0N8sHzZ0ldTtcRf3qknvmjJBDfsyD_-ah8wNIZjv-Nv8X-UC2uj44_4hlzX9HFh6P0tu7LYero7zzHbLheb-SpZvz49z2frBFMtQqKVlJQaAlVJrSDL9VTpaa4MUrpDCyQ0WU3CZDLNZaW1rTTKyuq8QAVGpGOWne6aGM47suXBNR2671JAeSysjIWVf4WV58IiJ07c0d4Pn66PKf9hfgA913Sc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations</title><source>ACS Publications</source><creator>Guo, Miao ; Geng, Wen-Chao ; Liu, Chengbin ; Gu, Jiayun ; Zhang, Zezhong ; Tang, Yanhong</creator><creatorcontrib>Guo, Miao ; Geng, Wen-Chao ; Liu, Chengbin ; Gu, Jiayun ; Zhang, Zezhong ; Tang, Yanhong</creatorcontrib><description>Two-dimensional (2D) Ti3C2T x MXene has shown great potential in the energy storage field, and its performance strongly depends on the intercalation of cations. Therefore, engineering its interlayer ion channels is the key to enhance the electrochemical performance of Ti3C2T x , but it is challenging due to the restacking nature of 2D materials. Herein, an original strategy for in situ introduction of large-size and electrostatic −SO4 termination is developed to engineer Ti3C2T x MXene interlayer channels. The chemical binding and steric effect of −SO4 termination ensure a stable and expanded interlayer ion channel. The electrostatic effect of −SO4 benefits electrolyte ion infiltration. Consequently, the capacitance of Ti3C2T x is increased by approximately 66 and 143% compared to those synthesized by common methods. The Ti3C2T x electrode exhibits a high areal capacitance of 1399.0 mF cm–2 at 1 mV s–1, excellent rate capability, and ultralong cycle life without capacitance loss after 17,200 cycles. The all-solid-state supercapacitor (ASSS) based on the Ti3C2T x delivers an ultrahigh areal capacitance of 391.5 mF cm–2, which reaches the state-of-the-art level. Moreover, the ASSS shows excellent flexibility and wearable potential. The established strategy blazes a new trail to improve the capacitance performance of MXenes.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c02026</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-10, Vol.32 (19), p.8257-8265</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-6422e3ce04b2640576946974cae3daf0e16ef6e1c52372b66fb6a2bf678a40c13</citedby><cites>FETCH-LOGICAL-a361t-6422e3ce04b2640576946974cae3daf0e16ef6e1c52372b66fb6a2bf678a40c13</cites><orcidid>0000-0002-5664-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c02026$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c02026$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Guo, Miao</creatorcontrib><creatorcontrib>Geng, Wen-Chao</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><creatorcontrib>Gu, Jiayun</creatorcontrib><creatorcontrib>Zhang, Zezhong</creatorcontrib><creatorcontrib>Tang, Yanhong</creatorcontrib><title>Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Two-dimensional (2D) Ti3C2T x MXene has shown great potential in the energy storage field, and its performance strongly depends on the intercalation of cations. Therefore, engineering its interlayer ion channels is the key to enhance the electrochemical performance of Ti3C2T x , but it is challenging due to the restacking nature of 2D materials. Herein, an original strategy for in situ introduction of large-size and electrostatic −SO4 termination is developed to engineer Ti3C2T x MXene interlayer channels. The chemical binding and steric effect of −SO4 termination ensure a stable and expanded interlayer ion channel. The electrostatic effect of −SO4 benefits electrolyte ion infiltration. Consequently, the capacitance of Ti3C2T x is increased by approximately 66 and 143% compared to those synthesized by common methods. The Ti3C2T x electrode exhibits a high areal capacitance of 1399.0 mF cm–2 at 1 mV s–1, excellent rate capability, and ultralong cycle life without capacitance loss after 17,200 cycles. The all-solid-state supercapacitor (ASSS) based on the Ti3C2T x delivers an ultrahigh areal capacitance of 391.5 mF cm–2, which reaches the state-of-the-art level. Moreover, the ASSS shows excellent flexibility and wearable potential. The established strategy blazes a new trail to improve the capacitance performance of MXenes.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKuPIOQFtk6y2ezWu1JaK1S8sAXvltl04m7Zn5JE0Lc3pdVbr-bAmW_mcBi7FzARIMUDGj8xNXUdBnITMCBB6gs2EpmEJAOQl2wExTRPVJ7pa3bj_R5ARLQYsf22DQ7r5qPmM0fY8jke0DQBe0N8sHzZ0ldTtcRf3qknvmjJBDfsyD_-ah8wNIZjv-Nv8X-UC2uj44_4hlzX9HFh6P0tu7LYero7zzHbLheb-SpZvz49z2frBFMtQqKVlJQaAlVJrSDL9VTpaa4MUrpDCyQ0WU3CZDLNZaW1rTTKyuq8QAVGpGOWne6aGM47suXBNR2671JAeSysjIWVf4WV58IiJ07c0d4Pn66PKf9hfgA913Sc</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Guo, Miao</creator><creator>Geng, Wen-Chao</creator><creator>Liu, Chengbin</creator><creator>Gu, Jiayun</creator><creator>Zhang, Zezhong</creator><creator>Tang, Yanhong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></search><sort><creationdate>20201013</creationdate><title>Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations</title><author>Guo, Miao ; Geng, Wen-Chao ; Liu, Chengbin ; Gu, Jiayun ; Zhang, Zezhong ; Tang, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-6422e3ce04b2640576946974cae3daf0e16ef6e1c52372b66fb6a2bf678a40c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Miao</creatorcontrib><creatorcontrib>Geng, Wen-Chao</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><creatorcontrib>Gu, Jiayun</creatorcontrib><creatorcontrib>Zhang, Zezhong</creatorcontrib><creatorcontrib>Tang, Yanhong</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Miao</au><au>Geng, Wen-Chao</au><au>Liu, Chengbin</au><au>Gu, Jiayun</au><au>Zhang, Zezhong</au><au>Tang, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>32</volume><issue>19</issue><spage>8257</spage><epage>8265</epage><pages>8257-8265</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Two-dimensional (2D) Ti3C2T x MXene has shown great potential in the energy storage field, and its performance strongly depends on the intercalation of cations. Therefore, engineering its interlayer ion channels is the key to enhance the electrochemical performance of Ti3C2T x , but it is challenging due to the restacking nature of 2D materials. Herein, an original strategy for in situ introduction of large-size and electrostatic −SO4 termination is developed to engineer Ti3C2T x MXene interlayer channels. The chemical binding and steric effect of −SO4 termination ensure a stable and expanded interlayer ion channel. The electrostatic effect of −SO4 benefits electrolyte ion infiltration. Consequently, the capacitance of Ti3C2T x is increased by approximately 66 and 143% compared to those synthesized by common methods. The Ti3C2T x electrode exhibits a high areal capacitance of 1399.0 mF cm–2 at 1 mV s–1, excellent rate capability, and ultralong cycle life without capacitance loss after 17,200 cycles. The all-solid-state supercapacitor (ASSS) based on the Ti3C2T x delivers an ultrahigh areal capacitance of 391.5 mF cm–2, which reaches the state-of-the-art level. Moreover, the ASSS shows excellent flexibility and wearable potential. The established strategy blazes a new trail to improve the capacitance performance of MXenes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c02026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-10, Vol.32 (19), p.8257-8265
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_0c02026
source ACS Publications
title Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20Areal%20Capacitance%20of%20Flexible%20MXene%20Electrodes:%20Electrostatic%20and%20Steric%20Effects%20of%20Terminations&rft.jtitle=Chemistry%20of%20materials&rft.au=Guo,%20Miao&rft.date=2020-10-13&rft.volume=32&rft.issue=19&rft.spage=8257&rft.epage=8265&rft.pages=8257-8265&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c02026&rft_dat=%3Cacs_cross%3Ea002760491%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true