Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts

Electrocatalysts with high activity for the oxygen evolution reaction (OER) play a pivotal role in various electrochemical devices such as water electrolyzers and metal–air batteries. Electronic interactions between these catalysts and chemical reactants control the activity and efficiency and hence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-10, Vol.32 (19), p.8195-8202
Hauptverfasser: Miyahara, Yuto, Fukutsuka, Tomokazu, Abe, Takeshi, Miyazaki, Kohei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8202
container_issue 19
container_start_page 8195
container_title Chemistry of materials
container_volume 32
creator Miyahara, Yuto
Fukutsuka, Tomokazu
Abe, Takeshi
Miyazaki, Kohei
description Electrocatalysts with high activity for the oxygen evolution reaction (OER) play a pivotal role in various electrochemical devices such as water electrolyzers and metal–air batteries. Electronic interactions between these catalysts and chemical reactants control the activity and efficiency and hence need to be optimized, but only the cation components have been of interest. Here, through the optimization of both the cation and anion components, we demonstrate that a Ruddlesden–Popper-type oxychloride Sr2Co0.8Fe0.2O3Cl successfully outperforms Ba0.5Sr0.5Co0.8Fe0.2O3−δ, which is a well-known highly active OER catalyst. Moreover, Sr2Co0.8Fe0.2O3Cl also catalyzes the oxygen reduction reaction (ORR) and minimizes the overpotentials of both the ORR and OER, compared with previously reported conventional perovskite-type catalysts. We discuss possible descriptors of the catalytic activity of Sr2Co1–x Fe x O3Cl to clarify the origin of its activity and highlight a new reaction pathway for OER that involves catalysis by both Co and Fe.
doi_str_mv 10.1021/acs.chemmater.0c01674
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_0c01674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c298092204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-cf09ea16359c99ed4c43c94a4a9a455a87c27208b5b168573c29937d99ac95b03</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFYfQcgLbJ1NdrPZo8TWFgo9qOAtTCcbm5Jmy-5W7Nub0uLV08zw8_0MH2OPAiYCUvGEFCa0sbsdRusnQCByLa_YSKgUuAJIr9kICqO51Cq_ZXchbAHEgBYj9vlywI6_tdEmJUbsjqENiWuSmeWLnpzfOz-01snq50ibzvm2tiHBcLq_bJ9Mv113iK0bts5S9I7OJTHcs5sGu2AfLnPMPmbT93LOl6vXRfm85JjlInJqwFgUeaYMGWNrSTIjI1GiQakUFppSnUKxVmuRF0pnlBqT6doYJKPWkI2ZOveSdyF421R73-7QHysB1UlPNeip_vRUFz0DJ87cKd66g--HL_9hfgHlkG6p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts</title><source>ACS Publications</source><creator>Miyahara, Yuto ; Fukutsuka, Tomokazu ; Abe, Takeshi ; Miyazaki, Kohei</creator><creatorcontrib>Miyahara, Yuto ; Fukutsuka, Tomokazu ; Abe, Takeshi ; Miyazaki, Kohei</creatorcontrib><description>Electrocatalysts with high activity for the oxygen evolution reaction (OER) play a pivotal role in various electrochemical devices such as water electrolyzers and metal–air batteries. Electronic interactions between these catalysts and chemical reactants control the activity and efficiency and hence need to be optimized, but only the cation components have been of interest. Here, through the optimization of both the cation and anion components, we demonstrate that a Ruddlesden–Popper-type oxychloride Sr2Co0.8Fe0.2O3Cl successfully outperforms Ba0.5Sr0.5Co0.8Fe0.2O3−δ, which is a well-known highly active OER catalyst. Moreover, Sr2Co0.8Fe0.2O3Cl also catalyzes the oxygen reduction reaction (ORR) and minimizes the overpotentials of both the ORR and OER, compared with previously reported conventional perovskite-type catalysts. We discuss possible descriptors of the catalytic activity of Sr2Co1–x Fe x O3Cl to clarify the origin of its activity and highlight a new reaction pathway for OER that involves catalysis by both Co and Fe.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c01674</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2020-10, Vol.32 (19), p.8195-8202</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-cf09ea16359c99ed4c43c94a4a9a455a87c27208b5b168573c29937d99ac95b03</citedby><cites>FETCH-LOGICAL-a361t-cf09ea16359c99ed4c43c94a4a9a455a87c27208b5b168573c29937d99ac95b03</cites><orcidid>0000-0001-5177-3570 ; 0000-0003-4662-0996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c01674$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c01674$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Miyahara, Yuto</creatorcontrib><creatorcontrib>Fukutsuka, Tomokazu</creatorcontrib><creatorcontrib>Abe, Takeshi</creatorcontrib><creatorcontrib>Miyazaki, Kohei</creatorcontrib><title>Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Electrocatalysts with high activity for the oxygen evolution reaction (OER) play a pivotal role in various electrochemical devices such as water electrolyzers and metal–air batteries. Electronic interactions between these catalysts and chemical reactants control the activity and efficiency and hence need to be optimized, but only the cation components have been of interest. Here, through the optimization of both the cation and anion components, we demonstrate that a Ruddlesden–Popper-type oxychloride Sr2Co0.8Fe0.2O3Cl successfully outperforms Ba0.5Sr0.5Co0.8Fe0.2O3−δ, which is a well-known highly active OER catalyst. Moreover, Sr2Co0.8Fe0.2O3Cl also catalyzes the oxygen reduction reaction (ORR) and minimizes the overpotentials of both the ORR and OER, compared with previously reported conventional perovskite-type catalysts. We discuss possible descriptors of the catalytic activity of Sr2Co1–x Fe x O3Cl to clarify the origin of its activity and highlight a new reaction pathway for OER that involves catalysis by both Co and Fe.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFYfQcgLbJ1NdrPZo8TWFgo9qOAtTCcbm5Jmy-5W7Nub0uLV08zw8_0MH2OPAiYCUvGEFCa0sbsdRusnQCByLa_YSKgUuAJIr9kICqO51Cq_ZXchbAHEgBYj9vlywI6_tdEmJUbsjqENiWuSmeWLnpzfOz-01snq50ibzvm2tiHBcLq_bJ9Mv113iK0bts5S9I7OJTHcs5sGu2AfLnPMPmbT93LOl6vXRfm85JjlInJqwFgUeaYMGWNrSTIjI1GiQakUFppSnUKxVmuRF0pnlBqT6doYJKPWkI2ZOveSdyF421R73-7QHysB1UlPNeip_vRUFz0DJ87cKd66g--HL_9hfgHlkG6p</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Miyahara, Yuto</creator><creator>Fukutsuka, Tomokazu</creator><creator>Abe, Takeshi</creator><creator>Miyazaki, Kohei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5177-3570</orcidid><orcidid>https://orcid.org/0000-0003-4662-0996</orcidid></search><sort><creationdate>20201013</creationdate><title>Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts</title><author>Miyahara, Yuto ; Fukutsuka, Tomokazu ; Abe, Takeshi ; Miyazaki, Kohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-cf09ea16359c99ed4c43c94a4a9a455a87c27208b5b168573c29937d99ac95b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyahara, Yuto</creatorcontrib><creatorcontrib>Fukutsuka, Tomokazu</creatorcontrib><creatorcontrib>Abe, Takeshi</creatorcontrib><creatorcontrib>Miyazaki, Kohei</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyahara, Yuto</au><au>Fukutsuka, Tomokazu</au><au>Abe, Takeshi</au><au>Miyazaki, Kohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>32</volume><issue>19</issue><spage>8195</spage><epage>8202</epage><pages>8195-8202</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Electrocatalysts with high activity for the oxygen evolution reaction (OER) play a pivotal role in various electrochemical devices such as water electrolyzers and metal–air batteries. Electronic interactions between these catalysts and chemical reactants control the activity and efficiency and hence need to be optimized, but only the cation components have been of interest. Here, through the optimization of both the cation and anion components, we demonstrate that a Ruddlesden–Popper-type oxychloride Sr2Co0.8Fe0.2O3Cl successfully outperforms Ba0.5Sr0.5Co0.8Fe0.2O3−δ, which is a well-known highly active OER catalyst. Moreover, Sr2Co0.8Fe0.2O3Cl also catalyzes the oxygen reduction reaction (ORR) and minimizes the overpotentials of both the ORR and OER, compared with previously reported conventional perovskite-type catalysts. We discuss possible descriptors of the catalytic activity of Sr2Co1–x Fe x O3Cl to clarify the origin of its activity and highlight a new reaction pathway for OER that involves catalysis by both Co and Fe.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c01674</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5177-3570</orcidid><orcidid>https://orcid.org/0000-0003-4662-0996</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-10, Vol.32 (19), p.8195-8202
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_0c01674
source ACS Publications
title Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Site%20Catalysis%20of%20Fe-Incorporated%20Oxychlorides%20as%20Oxygen%20Evolution%20Electrocatalysts&rft.jtitle=Chemistry%20of%20materials&rft.au=Miyahara,%20Yuto&rft.date=2020-10-13&rft.volume=32&rft.issue=19&rft.spage=8195&rft.epage=8202&rft.pages=8195-8202&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c01674&rft_dat=%3Cacs_cross%3Ec298092204%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true