Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements

Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2018-04, Vol.18 (4), p.2189-2201
Hauptverfasser: Albéric, Marie, Caspi, Elad N, Bennet, Mathieu, Ajili, Widad, Nassif, Nadine, Azaïs, Thierry, Berner, Alex, Fratzl, Peter, Zolotoyabko, Emil, Bertinetti, Luca, Politi, Yael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2201
container_issue 4
container_start_page 2189
container_title Crystal growth & design
container_volume 18
creator Albéric, Marie
Caspi, Elad N
Bennet, Mathieu
Ajili, Widad
Nassif, Nadine
Azaïs, Thierry
Berner, Alex
Fratzl, Peter
Zolotoyabko, Emil
Bertinetti, Luca
Politi, Yael
description Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test plates of the Paracentrotus lividus sea urchins. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique, and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 1.2 to 1.6 wt % organics, 10 wt % of anhydrous ACC and less than 0.2 wt % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intracrystalline organics at the molecular level. Molecular interactions at organic/inorganic interfaces cause calcite lattice distortions of the tensile type. The latter are amplified during ACC crystallization and finally disappear after heat-assisted destruction of organic molecules. Converting the measured lattice distortions (strains) into internal stress components, we follow stress evolution upon annealing and find that complete crystallization of ACC leads to the isotropy of residual stresses in all investigated skeletal parts. These results allow us to speculate that organic macromolecules are preferentially attached to different crystallographic planes in the pristine test and spine samples.
doi_str_mv 10.1021/acs.cgd.7b01622
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_cgd_7b01622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c146597939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-e52382f5c2dda31ed06d9d9b8cf744fe2453dfc4c6807200500b74fedd6d18a93</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBBIlMLM6h3S-iNO3LGqClSq1AE6R4790qY4TmUnQv33OEoZme50H09Ph9AzJTNKGJ0rHWb6YGZ5SWjG2A2aUMFkkgsibv94Kvk9egjhRAjJM84nqN-4DvzZqgsuofsBcHilrK47eMXLpvXnY9uHUeqbiL5snRpM5QyOXa-0v4ROWVs7wDt_UK7WAdcOf4LCe6-PA_0GCzGD1xYacF14RHeVsgGerjhF-7f11-oj2e7eN6vlNlGcyi4BwbhkldDMmKiAIZlZmEUpdZWnaQUsFdxUOtWZJDkjRBBS5lE3JjNUqgWfovl4V_s2BA9VcfZ1o_yloKQYViviakVcrbiuFhsvY2MwTm3vXfzv3_QvTixx9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements</title><source>American Chemical Society Journals</source><creator>Albéric, Marie ; Caspi, Elad N ; Bennet, Mathieu ; Ajili, Widad ; Nassif, Nadine ; Azaïs, Thierry ; Berner, Alex ; Fratzl, Peter ; Zolotoyabko, Emil ; Bertinetti, Luca ; Politi, Yael</creator><creatorcontrib>Albéric, Marie ; Caspi, Elad N ; Bennet, Mathieu ; Ajili, Widad ; Nassif, Nadine ; Azaïs, Thierry ; Berner, Alex ; Fratzl, Peter ; Zolotoyabko, Emil ; Bertinetti, Luca ; Politi, Yael</creatorcontrib><description>Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test plates of the Paracentrotus lividus sea urchins. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique, and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 1.2 to 1.6 wt % organics, 10 wt % of anhydrous ACC and less than 0.2 wt % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intracrystalline organics at the molecular level. Molecular interactions at organic/inorganic interfaces cause calcite lattice distortions of the tensile type. The latter are amplified during ACC crystallization and finally disappear after heat-assisted destruction of organic molecules. Converting the measured lattice distortions (strains) into internal stress components, we follow stress evolution upon annealing and find that complete crystallization of ACC leads to the isotropy of residual stresses in all investigated skeletal parts. These results allow us to speculate that organic macromolecules are preferentially attached to different crystallographic planes in the pristine test and spine samples.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.7b01622</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2018-04, Vol.18 (4), p.2189-2201</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-e52382f5c2dda31ed06d9d9b8cf744fe2453dfc4c6807200500b74fedd6d18a93</citedby><cites>FETCH-LOGICAL-a318t-e52382f5c2dda31ed06d9d9b8cf744fe2453dfc4c6807200500b74fedd6d18a93</cites><orcidid>0000-0002-5322-9904 ; 0000-0002-9031-872X ; 0000-0002-4666-9610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.7b01622$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.7b01622$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Albéric, Marie</creatorcontrib><creatorcontrib>Caspi, Elad N</creatorcontrib><creatorcontrib>Bennet, Mathieu</creatorcontrib><creatorcontrib>Ajili, Widad</creatorcontrib><creatorcontrib>Nassif, Nadine</creatorcontrib><creatorcontrib>Azaïs, Thierry</creatorcontrib><creatorcontrib>Berner, Alex</creatorcontrib><creatorcontrib>Fratzl, Peter</creatorcontrib><creatorcontrib>Zolotoyabko, Emil</creatorcontrib><creatorcontrib>Bertinetti, Luca</creatorcontrib><creatorcontrib>Politi, Yael</creatorcontrib><title>Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test plates of the Paracentrotus lividus sea urchins. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique, and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 1.2 to 1.6 wt % organics, 10 wt % of anhydrous ACC and less than 0.2 wt % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intracrystalline organics at the molecular level. Molecular interactions at organic/inorganic interfaces cause calcite lattice distortions of the tensile type. The latter are amplified during ACC crystallization and finally disappear after heat-assisted destruction of organic molecules. Converting the measured lattice distortions (strains) into internal stress components, we follow stress evolution upon annealing and find that complete crystallization of ACC leads to the isotropy of residual stresses in all investigated skeletal parts. These results allow us to speculate that organic macromolecules are preferentially attached to different crystallographic planes in the pristine test and spine samples.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAUtBBIlMLM6h3S-iNO3LGqClSq1AE6R4790qY4TmUnQv33OEoZme50H09Ph9AzJTNKGJ0rHWb6YGZ5SWjG2A2aUMFkkgsibv94Kvk9egjhRAjJM84nqN-4DvzZqgsuofsBcHilrK47eMXLpvXnY9uHUeqbiL5snRpM5QyOXa-0v4ROWVs7wDt_UK7WAdcOf4LCe6-PA_0GCzGD1xYacF14RHeVsgGerjhF-7f11-oj2e7eN6vlNlGcyi4BwbhkldDMmKiAIZlZmEUpdZWnaQUsFdxUOtWZJDkjRBBS5lE3JjNUqgWfovl4V_s2BA9VcfZ1o_yloKQYViviakVcrbiuFhsvY2MwTm3vXfzv3_QvTixx9Q</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Albéric, Marie</creator><creator>Caspi, Elad N</creator><creator>Bennet, Mathieu</creator><creator>Ajili, Widad</creator><creator>Nassif, Nadine</creator><creator>Azaïs, Thierry</creator><creator>Berner, Alex</creator><creator>Fratzl, Peter</creator><creator>Zolotoyabko, Emil</creator><creator>Bertinetti, Luca</creator><creator>Politi, Yael</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5322-9904</orcidid><orcidid>https://orcid.org/0000-0002-9031-872X</orcidid><orcidid>https://orcid.org/0000-0002-4666-9610</orcidid></search><sort><creationdate>20180404</creationdate><title>Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements</title><author>Albéric, Marie ; Caspi, Elad N ; Bennet, Mathieu ; Ajili, Widad ; Nassif, Nadine ; Azaïs, Thierry ; Berner, Alex ; Fratzl, Peter ; Zolotoyabko, Emil ; Bertinetti, Luca ; Politi, Yael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-e52382f5c2dda31ed06d9d9b8cf744fe2453dfc4c6807200500b74fedd6d18a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albéric, Marie</creatorcontrib><creatorcontrib>Caspi, Elad N</creatorcontrib><creatorcontrib>Bennet, Mathieu</creatorcontrib><creatorcontrib>Ajili, Widad</creatorcontrib><creatorcontrib>Nassif, Nadine</creatorcontrib><creatorcontrib>Azaïs, Thierry</creatorcontrib><creatorcontrib>Berner, Alex</creatorcontrib><creatorcontrib>Fratzl, Peter</creatorcontrib><creatorcontrib>Zolotoyabko, Emil</creatorcontrib><creatorcontrib>Bertinetti, Luca</creatorcontrib><creatorcontrib>Politi, Yael</creatorcontrib><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albéric, Marie</au><au>Caspi, Elad N</au><au>Bennet, Mathieu</au><au>Ajili, Widad</au><au>Nassif, Nadine</au><au>Azaïs, Thierry</au><au>Berner, Alex</au><au>Fratzl, Peter</au><au>Zolotoyabko, Emil</au><au>Bertinetti, Luca</au><au>Politi, Yael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2018-04-04</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>2189</spage><epage>2201</epage><pages>2189-2201</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test plates of the Paracentrotus lividus sea urchins. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique, and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 1.2 to 1.6 wt % organics, 10 wt % of anhydrous ACC and less than 0.2 wt % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intracrystalline organics at the molecular level. Molecular interactions at organic/inorganic interfaces cause calcite lattice distortions of the tensile type. The latter are amplified during ACC crystallization and finally disappear after heat-assisted destruction of organic molecules. Converting the measured lattice distortions (strains) into internal stress components, we follow stress evolution upon annealing and find that complete crystallization of ACC leads to the isotropy of residual stresses in all investigated skeletal parts. These results allow us to speculate that organic macromolecules are preferentially attached to different crystallographic planes in the pristine test and spine samples.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.7b01622</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5322-9904</orcidid><orcidid>https://orcid.org/0000-0002-9031-872X</orcidid><orcidid>https://orcid.org/0000-0002-4666-9610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2018-04, Vol.18 (4), p.2189-2201
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_acs_cgd_7b01622
source American Chemical Society Journals
title Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Calcite,%20Amorphous%20Calcium%20Carbonate,%20and%20Intracrystalline%20Organics%20in%20Sea%20Urchin%20Skeletal%20Elements&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Albe%CC%81ric,%20Marie&rft.date=2018-04-04&rft.volume=18&rft.issue=4&rft.spage=2189&rft.epage=2201&rft.pages=2189-2201&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.7b01622&rft_dat=%3Cacs_cross%3Ec146597939%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true