Basal Plane Dislocation Free Recombination Layers on Low-Doped Buffer Layer for Power Devices
We report a novel approach to grow BPD-free 4H-SiC device-ready epilayers, where we start by growing a thin low-doped buffer layer (5 × 1015 to 1 × 1016 cm–3, N-type) to achieve 100% BPD conversion, followed by a moderately thick (∼10 μm) higher-doped recombination layer (5 × 1016 to 1.6 × 1017 cm–3...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2017-04, Vol.17 (4), p.1550-1557 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a novel approach to grow BPD-free 4H-SiC device-ready epilayers, where we start by growing a thin low-doped buffer layer (5 × 1015 to 1 × 1016 cm–3, N-type) to achieve 100% BPD conversion, followed by a moderately thick (∼10 μm) higher-doped recombination layer (5 × 1016 to 1.6 × 1017 cm–3, N-type) to ensure that all recombination occurs within a BPD-free region. High doping of the BPD-free recombination layer ensures fast carrier recombination under forward bias, preventing any stacking fault nucleation in the active layer during bipolar device operation. All the individual BPDs in the buffer epilayer are converted to benign threading edge dislocations (TEDs) over a wide range of C/Si ratios (1 to 1.8), introducing a minimal on-resistance of |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.6b01460 |