Transformation and Control of Crystal Structures on Electronic Thin Films

The deposition of Ni film on the Si substrate is important due to its broad applications in electronics, especially at the nanoscale. In this study, we applied molecular dynamics simulations to perform a subatomic observation simultaneously during the process of sputtering Ni on crystalline Si, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2024-02, Vol.24 (3), p.992-1002
Hauptverfasser: Chang, Yuan-Wei, Chen, Yi-Chen, Chang, Chia-Yu, Chou, Yi-Chia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1002
container_issue 3
container_start_page 992
container_title Crystal growth & design
container_volume 24
creator Chang, Yuan-Wei
Chen, Yi-Chen
Chang, Chia-Yu
Chou, Yi-Chia
description The deposition of Ni film on the Si substrate is important due to its broad applications in electronics, especially at the nanoscale. In this study, we applied molecular dynamics simulations to perform a subatomic observation simultaneously during the process of sputtering Ni on crystalline Si, and a model according to the Thompson formula was developed to simulate the energy distribution of ejected atoms during sputtering. We found the critical parameters controlling interdiffusion behavior were substrate temperature and incident flux of Ni. The substrate temperature significantly leads the crystallinity of the Ni film, where they exhibit amorphous, FCC, and BCC structures at substrate temperatures below 400, 500–600, and beyond 700 K, respectively. The incident flux dominates the crystallinity of the deposited Ni film. Only amorphous Ni forms with 10 atom/ps flux, and fewer defects in the FCC Ni film were observed with 2.5 atom/ps flux. To balance the throughputs and film quality, an incident flux of 2.5 atom/ps is the optimized choice. The detailed understanding enables the control of thin films during electronic fabrication.
doi_str_mv 10.1021/acs.cgd.3c00960
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_cgd_3c00960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h98361101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-a4f6b363b56fd8273859df00f4df210406bdae6b4e4d28ca6bfc25ee8925684b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws3pHSS_-ijuiqKWVKjEQ5sjxB6RKbGQnQ_89qVpGpnule97T6UHouYC8AFKslE65_jI51QBrATdoUXAis5IDv_3LTNJ79JDSEQBKQekC7euofHIhDmrsgsfKG1wFP8bQ4-BwFU9pVD3-GOOkxynahGdo01s9E77TuP7uPN52_ZAe0Z1TfbJP17lEn9tNXe2yw_vbvno9ZIqUZMwUc6KlgrZcOCNJSSVfGwfgmHGkAAaiNcqKlllmiNRKtE4Tbq1cEy4ka-kSrS53dQwpReuan9gNKp6aApqziWY20cwmmquJufFyaZwXxzBFP__3L_0Ln-liEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transformation and Control of Crystal Structures on Electronic Thin Films</title><source>ACS Publications</source><creator>Chang, Yuan-Wei ; Chen, Yi-Chen ; Chang, Chia-Yu ; Chou, Yi-Chia</creator><creatorcontrib>Chang, Yuan-Wei ; Chen, Yi-Chen ; Chang, Chia-Yu ; Chou, Yi-Chia</creatorcontrib><description>The deposition of Ni film on the Si substrate is important due to its broad applications in electronics, especially at the nanoscale. In this study, we applied molecular dynamics simulations to perform a subatomic observation simultaneously during the process of sputtering Ni on crystalline Si, and a model according to the Thompson formula was developed to simulate the energy distribution of ejected atoms during sputtering. We found the critical parameters controlling interdiffusion behavior were substrate temperature and incident flux of Ni. The substrate temperature significantly leads the crystallinity of the Ni film, where they exhibit amorphous, FCC, and BCC structures at substrate temperatures below 400, 500–600, and beyond 700 K, respectively. The incident flux dominates the crystallinity of the deposited Ni film. Only amorphous Ni forms with 10 atom/ps flux, and fewer defects in the FCC Ni film were observed with 2.5 atom/ps flux. To balance the throughputs and film quality, an incident flux of 2.5 atom/ps is the optimized choice. The detailed understanding enables the control of thin films during electronic fabrication.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.3c00960</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2024-02, Vol.24 (3), p.992-1002</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a272t-a4f6b363b56fd8273859df00f4df210406bdae6b4e4d28ca6bfc25ee8925684b3</cites><orcidid>0000-0002-7775-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.3c00960$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.3c00960$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chang, Yuan-Wei</creatorcontrib><creatorcontrib>Chen, Yi-Chen</creatorcontrib><creatorcontrib>Chang, Chia-Yu</creatorcontrib><creatorcontrib>Chou, Yi-Chia</creatorcontrib><title>Transformation and Control of Crystal Structures on Electronic Thin Films</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>The deposition of Ni film on the Si substrate is important due to its broad applications in electronics, especially at the nanoscale. In this study, we applied molecular dynamics simulations to perform a subatomic observation simultaneously during the process of sputtering Ni on crystalline Si, and a model according to the Thompson formula was developed to simulate the energy distribution of ejected atoms during sputtering. We found the critical parameters controlling interdiffusion behavior were substrate temperature and incident flux of Ni. The substrate temperature significantly leads the crystallinity of the Ni film, where they exhibit amorphous, FCC, and BCC structures at substrate temperatures below 400, 500–600, and beyond 700 K, respectively. The incident flux dominates the crystallinity of the deposited Ni film. Only amorphous Ni forms with 10 atom/ps flux, and fewer defects in the FCC Ni film were observed with 2.5 atom/ps flux. To balance the throughputs and film quality, an incident flux of 2.5 atom/ps is the optimized choice. The detailed understanding enables the control of thin films during electronic fabrication.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUws3pHSS_-ijuiqKWVKjEQ5sjxB6RKbGQnQ_89qVpGpnule97T6UHouYC8AFKslE65_jI51QBrATdoUXAis5IDv_3LTNJ79JDSEQBKQekC7euofHIhDmrsgsfKG1wFP8bQ4-BwFU9pVD3-GOOkxynahGdo01s9E77TuP7uPN52_ZAe0Z1TfbJP17lEn9tNXe2yw_vbvno9ZIqUZMwUc6KlgrZcOCNJSSVfGwfgmHGkAAaiNcqKlllmiNRKtE4Tbq1cEy4ka-kSrS53dQwpReuan9gNKp6aApqziWY20cwmmquJufFyaZwXxzBFP__3L_0Ln-liEw</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Chang, Yuan-Wei</creator><creator>Chen, Yi-Chen</creator><creator>Chang, Chia-Yu</creator><creator>Chou, Yi-Chia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7775-2927</orcidid></search><sort><creationdate>20240207</creationdate><title>Transformation and Control of Crystal Structures on Electronic Thin Films</title><author>Chang, Yuan-Wei ; Chen, Yi-Chen ; Chang, Chia-Yu ; Chou, Yi-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-a4f6b363b56fd8273859df00f4df210406bdae6b4e4d28ca6bfc25ee8925684b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Yuan-Wei</creatorcontrib><creatorcontrib>Chen, Yi-Chen</creatorcontrib><creatorcontrib>Chang, Chia-Yu</creatorcontrib><creatorcontrib>Chou, Yi-Chia</creatorcontrib><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Yuan-Wei</au><au>Chen, Yi-Chen</au><au>Chang, Chia-Yu</au><au>Chou, Yi-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation and Control of Crystal Structures on Electronic Thin Films</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>992</spage><epage>1002</epage><pages>992-1002</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The deposition of Ni film on the Si substrate is important due to its broad applications in electronics, especially at the nanoscale. In this study, we applied molecular dynamics simulations to perform a subatomic observation simultaneously during the process of sputtering Ni on crystalline Si, and a model according to the Thompson formula was developed to simulate the energy distribution of ejected atoms during sputtering. We found the critical parameters controlling interdiffusion behavior were substrate temperature and incident flux of Ni. The substrate temperature significantly leads the crystallinity of the Ni film, where they exhibit amorphous, FCC, and BCC structures at substrate temperatures below 400, 500–600, and beyond 700 K, respectively. The incident flux dominates the crystallinity of the deposited Ni film. Only amorphous Ni forms with 10 atom/ps flux, and fewer defects in the FCC Ni film were observed with 2.5 atom/ps flux. To balance the throughputs and film quality, an incident flux of 2.5 atom/ps is the optimized choice. The detailed understanding enables the control of thin films during electronic fabrication.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.3c00960</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7775-2927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2024-02, Vol.24 (3), p.992-1002
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_acs_cgd_3c00960
source ACS Publications
title Transformation and Control of Crystal Structures on Electronic Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20and%20Control%20of%20Crystal%20Structures%20on%20Electronic%20Thin%20Films&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Chang,%20Yuan-Wei&rft.date=2024-02-07&rft.volume=24&rft.issue=3&rft.spage=992&rft.epage=1002&rft.pages=992-1002&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.3c00960&rft_dat=%3Cacs_cross%3Eh98361101%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true