Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel

The formation of cocrystals is closely related to the weak interaction between the participant molecules. Among the factors that influence the interaction between molecules in a cocrystal, the molecular conformation is crucially important. The analysis of molecular electrostatic potential surfaces (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2021-04, Vol.21 (4), p.2292-2300
Hauptverfasser: Yang, Dezhi, Cao, Junzi, Heng, Tianyu, Xing, Cheng, Yang, Shiying, Zhang, Li, Lu, Yang, Du, Guanhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2300
container_issue 4
container_start_page 2292
container_title Crystal growth & design
container_volume 21
creator Yang, Dezhi
Cao, Junzi
Heng, Tianyu
Xing, Cheng
Yang, Shiying
Zhang, Li
Lu, Yang
Du, Guanhua
description The formation of cocrystals is closely related to the weak interaction between the participant molecules. Among the factors that influence the interaction between molecules in a cocrystal, the molecular conformation is crucially important. The analysis of molecular electrostatic potential surfaces (MEPS) using density functional theory (DFT) can accurately reflect changes in the intermolecular interaction sites caused by the conformational changes, providing a useful method for predicting the interactions of the participant molecules in a cocrystal. In this study, the conformations of three flavonols, namely, kaempferol (KAE), quercetin (QUE), and myricetin (MYR), with the cocrystal conformer praziquantel (PRA) were carefully analyzed by theoretical calculations. Boltzmann distributions of different conformations at 300 K were obtained, and the formation of the cocrystal was predicted by the analysis of possible interactions of the different conformations. Various analytical techniques were used in combination with experiments to verify the predicted cocrystal formation. All predicted cocrystals, named KAE-PRA, QUE-PRA 1, QUE-PRA 2, and MYR-PRA, were formed, and three single crystals of these cocrystals were successfully obtained. These crystals are reported for the first time. This study provides a way to improve the success rate of cocrystal prediction by MEPS.
doi_str_mv 10.1021/acs.cgd.0c01706
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_cgd_0c01706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a600206930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-289e20976b54f490ce2795fde4264e0673daee1c4f0eea0a600b2236147208633</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbPXvcuaWc3H5scS7AqFBSs5zDdTExKzOruRqm_3q2tR08zvB8D8zB2LWAmQIo5ajfTr_UMNAgF2QmbiFTmkUohPf3bkzw-ZxfObQFAZXE8Yc26JWPJdxp7XmKvxx59ZwaOQ82fvR21H22wFgP2O9c5bhruW-Kl0XbnPPa_yrq1RHzZ46cZTJC-Ot_yJ4vf3ceIg6f-kp01IUtXxzllL8vbdXkfrR7vHsrFKkKplI9kXpCEQmWbNGmSAjRJVaRNTYnMEoJMxTUSCZ00QISAGcBGyjgTiZKQh4embH64q61xzlJTvdvuDe2uElDtMVUBUxUwVUdMoXFzaOyNrRlteNT9m_4BATlsDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel</title><source>American Chemical Society Journals</source><creator>Yang, Dezhi ; Cao, Junzi ; Heng, Tianyu ; Xing, Cheng ; Yang, Shiying ; Zhang, Li ; Lu, Yang ; Du, Guanhua</creator><creatorcontrib>Yang, Dezhi ; Cao, Junzi ; Heng, Tianyu ; Xing, Cheng ; Yang, Shiying ; Zhang, Li ; Lu, Yang ; Du, Guanhua</creatorcontrib><description>The formation of cocrystals is closely related to the weak interaction between the participant molecules. Among the factors that influence the interaction between molecules in a cocrystal, the molecular conformation is crucially important. The analysis of molecular electrostatic potential surfaces (MEPS) using density functional theory (DFT) can accurately reflect changes in the intermolecular interaction sites caused by the conformational changes, providing a useful method for predicting the interactions of the participant molecules in a cocrystal. In this study, the conformations of three flavonols, namely, kaempferol (KAE), quercetin (QUE), and myricetin (MYR), with the cocrystal conformer praziquantel (PRA) were carefully analyzed by theoretical calculations. Boltzmann distributions of different conformations at 300 K were obtained, and the formation of the cocrystal was predicted by the analysis of possible interactions of the different conformations. Various analytical techniques were used in combination with experiments to verify the predicted cocrystal formation. All predicted cocrystals, named KAE-PRA, QUE-PRA 1, QUE-PRA 2, and MYR-PRA, were formed, and three single crystals of these cocrystals were successfully obtained. These crystals are reported for the first time. This study provides a way to improve the success rate of cocrystal prediction by MEPS.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.0c01706</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2021-04, Vol.21 (4), p.2292-2300</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-289e20976b54f490ce2795fde4264e0673daee1c4f0eea0a600b2236147208633</citedby><cites>FETCH-LOGICAL-a277t-289e20976b54f490ce2795fde4264e0673daee1c4f0eea0a600b2236147208633</cites><orcidid>0000-0002-2274-5703 ; 0000-0002-3159-4126 ; 0000-0002-0417-3932 ; 0000-0003-3115-8196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.0c01706$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.0c01706$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Yang, Dezhi</creatorcontrib><creatorcontrib>Cao, Junzi</creatorcontrib><creatorcontrib>Heng, Tianyu</creatorcontrib><creatorcontrib>Xing, Cheng</creatorcontrib><creatorcontrib>Yang, Shiying</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Du, Guanhua</creatorcontrib><title>Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>The formation of cocrystals is closely related to the weak interaction between the participant molecules. Among the factors that influence the interaction between molecules in a cocrystal, the molecular conformation is crucially important. The analysis of molecular electrostatic potential surfaces (MEPS) using density functional theory (DFT) can accurately reflect changes in the intermolecular interaction sites caused by the conformational changes, providing a useful method for predicting the interactions of the participant molecules in a cocrystal. In this study, the conformations of three flavonols, namely, kaempferol (KAE), quercetin (QUE), and myricetin (MYR), with the cocrystal conformer praziquantel (PRA) were carefully analyzed by theoretical calculations. Boltzmann distributions of different conformations at 300 K were obtained, and the formation of the cocrystal was predicted by the analysis of possible interactions of the different conformations. Various analytical techniques were used in combination with experiments to verify the predicted cocrystal formation. All predicted cocrystals, named KAE-PRA, QUE-PRA 1, QUE-PRA 2, and MYR-PRA, were formed, and three single crystals of these cocrystals were successfully obtained. These crystals are reported for the first time. This study provides a way to improve the success rate of cocrystal prediction by MEPS.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbPXvcuaWc3H5scS7AqFBSs5zDdTExKzOruRqm_3q2tR08zvB8D8zB2LWAmQIo5ajfTr_UMNAgF2QmbiFTmkUohPf3bkzw-ZxfObQFAZXE8Yc26JWPJdxp7XmKvxx59ZwaOQ82fvR21H22wFgP2O9c5bhruW-Kl0XbnPPa_yrq1RHzZ46cZTJC-Ot_yJ4vf3ceIg6f-kp01IUtXxzllL8vbdXkfrR7vHsrFKkKplI9kXpCEQmWbNGmSAjRJVaRNTYnMEoJMxTUSCZ00QISAGcBGyjgTiZKQh4embH64q61xzlJTvdvuDe2uElDtMVUBUxUwVUdMoXFzaOyNrRlteNT9m_4BATlsDw</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Yang, Dezhi</creator><creator>Cao, Junzi</creator><creator>Heng, Tianyu</creator><creator>Xing, Cheng</creator><creator>Yang, Shiying</creator><creator>Zhang, Li</creator><creator>Lu, Yang</creator><creator>Du, Guanhua</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2274-5703</orcidid><orcidid>https://orcid.org/0000-0002-3159-4126</orcidid><orcidid>https://orcid.org/0000-0002-0417-3932</orcidid><orcidid>https://orcid.org/0000-0003-3115-8196</orcidid></search><sort><creationdate>20210407</creationdate><title>Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel</title><author>Yang, Dezhi ; Cao, Junzi ; Heng, Tianyu ; Xing, Cheng ; Yang, Shiying ; Zhang, Li ; Lu, Yang ; Du, Guanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-289e20976b54f490ce2795fde4264e0673daee1c4f0eea0a600b2236147208633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dezhi</creatorcontrib><creatorcontrib>Cao, Junzi</creatorcontrib><creatorcontrib>Heng, Tianyu</creatorcontrib><creatorcontrib>Xing, Cheng</creatorcontrib><creatorcontrib>Yang, Shiying</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Du, Guanhua</creatorcontrib><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dezhi</au><au>Cao, Junzi</au><au>Heng, Tianyu</au><au>Xing, Cheng</au><au>Yang, Shiying</au><au>Zhang, Li</au><au>Lu, Yang</au><au>Du, Guanhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><spage>2292</spage><epage>2300</epage><pages>2292-2300</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The formation of cocrystals is closely related to the weak interaction between the participant molecules. Among the factors that influence the interaction between molecules in a cocrystal, the molecular conformation is crucially important. The analysis of molecular electrostatic potential surfaces (MEPS) using density functional theory (DFT) can accurately reflect changes in the intermolecular interaction sites caused by the conformational changes, providing a useful method for predicting the interactions of the participant molecules in a cocrystal. In this study, the conformations of three flavonols, namely, kaempferol (KAE), quercetin (QUE), and myricetin (MYR), with the cocrystal conformer praziquantel (PRA) were carefully analyzed by theoretical calculations. Boltzmann distributions of different conformations at 300 K were obtained, and the formation of the cocrystal was predicted by the analysis of possible interactions of the different conformations. Various analytical techniques were used in combination with experiments to verify the predicted cocrystal formation. All predicted cocrystals, named KAE-PRA, QUE-PRA 1, QUE-PRA 2, and MYR-PRA, were formed, and three single crystals of these cocrystals were successfully obtained. These crystals are reported for the first time. This study provides a way to improve the success rate of cocrystal prediction by MEPS.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.0c01706</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2274-5703</orcidid><orcidid>https://orcid.org/0000-0002-3159-4126</orcidid><orcidid>https://orcid.org/0000-0002-0417-3932</orcidid><orcidid>https://orcid.org/0000-0003-3115-8196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2021-04, Vol.21 (4), p.2292-2300
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_acs_cgd_0c01706
source American Chemical Society Journals
title Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Calculation%20and%20Structural%20Analysis%20of%20the%20Cocrystals%20of%20Three%20Flavonols%20with%20Praziquantel&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Yang,%20Dezhi&rft.date=2021-04-07&rft.volume=21&rft.issue=4&rft.spage=2292&rft.epage=2300&rft.pages=2292-2300&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.0c01706&rft_dat=%3Cacs_cross%3Ea600206930%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true