Complex Chaperone Dependence of Rubisco Biogenesis
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produce...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2018-06, Vol.57 (23), p.3210-3216 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3216 |
---|---|
container_issue | 23 |
container_start_page | 3210 |
container_title | Biochemistry (Easton) |
container_volume | 57 |
creator | Wilson, Robert H Hayer-Hartl, Manajit |
description | Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature. |
doi_str_mv | 10.1021/acs.biochem.8b00132 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_biochem_8b00132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b024098973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRbKw-gSB5gbSzpyR7qbEeoCCIXofs7sSmNNmwa0Df3pREL70ahvm_H-Yj5JrCigKj68qElW6c2WG7yjUA5eyERFQySIRS8pREAJAmTKWwIBch7MdVQCbOyYIpmSsFMiKscG1_wK-42FU9etdhfI89dhY7g7Gr49dBN8G4-K5xH9hhaMIlOaurQ8CreS7J-8PmrXhKti-Pz8XtNqm4kJ8JF9QYsAJSJlitWZ5yJqXhxmANGbWYa2VTa8GyTFSajseMATWCS5lKKviS8KnXeBeCx7rsfdNW_rukUB4NlKOBcjZQzgZG6mai-kG3aP-Y35fHwHoKHOm9G3w3PvFv5Q_bgGhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex Chaperone Dependence of Rubisco Biogenesis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wilson, Robert H ; Hayer-Hartl, Manajit</creator><creatorcontrib>Wilson, Robert H ; Hayer-Hartl, Manajit</creatorcontrib><description>Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.8b00132</identifier><identifier>PMID: 29589905</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Escherichia coli - genetics ; Escherichia coli - metabolism ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Ribulose-Bisphosphate Carboxylase - biosynthesis ; Ribulose-Bisphosphate Carboxylase - genetics</subject><ispartof>Biochemistry (Easton), 2018-06, Vol.57 (23), p.3210-3216</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</citedby><cites>FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</cites><orcidid>0000-0001-8213-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.8b00132$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.8b00132$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29589905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Robert H</creatorcontrib><creatorcontrib>Hayer-Hartl, Manajit</creatorcontrib><title>Complex Chaperone Dependence of Rubisco Biogenesis</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.</description><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Ribulose-Bisphosphate Carboxylase - biosynthesis</subject><subject>Ribulose-Bisphosphate Carboxylase - genetics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNtKw0AQhhdRbKw-gSB5gbSzpyR7qbEeoCCIXofs7sSmNNmwa0Df3pREL70ahvm_H-Yj5JrCigKj68qElW6c2WG7yjUA5eyERFQySIRS8pREAJAmTKWwIBch7MdVQCbOyYIpmSsFMiKscG1_wK-42FU9etdhfI89dhY7g7Gr49dBN8G4-K5xH9hhaMIlOaurQ8CreS7J-8PmrXhKti-Pz8XtNqm4kJ8JF9QYsAJSJlitWZ5yJqXhxmANGbWYa2VTa8GyTFSajseMATWCS5lKKviS8KnXeBeCx7rsfdNW_rukUB4NlKOBcjZQzgZG6mai-kG3aP-Y35fHwHoKHOm9G3w3PvFv5Q_bgGhx</recordid><startdate>20180612</startdate><enddate>20180612</enddate><creator>Wilson, Robert H</creator><creator>Hayer-Hartl, Manajit</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8213-6742</orcidid></search><sort><creationdate>20180612</creationdate><title>Complex Chaperone Dependence of Rubisco Biogenesis</title><author>Wilson, Robert H ; Hayer-Hartl, Manajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Ribulose-Bisphosphate Carboxylase - biosynthesis</topic><topic>Ribulose-Bisphosphate Carboxylase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Robert H</creatorcontrib><creatorcontrib>Hayer-Hartl, Manajit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Robert H</au><au>Hayer-Hartl, Manajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Chaperone Dependence of Rubisco Biogenesis</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2018-06-12</date><risdate>2018</risdate><volume>57</volume><issue>23</issue><spage>3210</spage><epage>3216</epage><pages>3210-3216</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29589905</pmid><doi>10.1021/acs.biochem.8b00132</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8213-6742</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2018-06, Vol.57 (23), p.3210-3216 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_biochem_8b00132 |
source | MEDLINE; American Chemical Society Journals |
subjects | Escherichia coli - genetics Escherichia coli - metabolism Molecular Chaperones - genetics Molecular Chaperones - metabolism Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Ribulose-Bisphosphate Carboxylase - biosynthesis Ribulose-Bisphosphate Carboxylase - genetics |
title | Complex Chaperone Dependence of Rubisco Biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Chaperone%20Dependence%20of%20Rubisco%20Biogenesis&rft.jtitle=Biochemistry%20(Easton)&rft.au=Wilson,%20Robert%20H&rft.date=2018-06-12&rft.volume=57&rft.issue=23&rft.spage=3210&rft.epage=3216&rft.pages=3210-3216&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.8b00132&rft_dat=%3Cacs_cross%3Eb024098973%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29589905&rfr_iscdi=true |