Complex Chaperone Dependence of Rubisco Biogenesis

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2018-06, Vol.57 (23), p.3210-3216
Hauptverfasser: Wilson, Robert H, Hayer-Hartl, Manajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3216
container_issue 23
container_start_page 3210
container_title Biochemistry (Easton)
container_volume 57
creator Wilson, Robert H
Hayer-Hartl, Manajit
description Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.
doi_str_mv 10.1021/acs.biochem.8b00132
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_biochem_8b00132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b024098973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRbKw-gSB5gbSzpyR7qbEeoCCIXofs7sSmNNmwa0Df3pREL70ahvm_H-Yj5JrCigKj68qElW6c2WG7yjUA5eyERFQySIRS8pREAJAmTKWwIBch7MdVQCbOyYIpmSsFMiKscG1_wK-42FU9etdhfI89dhY7g7Gr49dBN8G4-K5xH9hhaMIlOaurQ8CreS7J-8PmrXhKti-Pz8XtNqm4kJ8JF9QYsAJSJlitWZ5yJqXhxmANGbWYa2VTa8GyTFSajseMATWCS5lKKviS8KnXeBeCx7rsfdNW_rukUB4NlKOBcjZQzgZG6mai-kG3aP-Y35fHwHoKHOm9G3w3PvFv5Q_bgGhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex Chaperone Dependence of Rubisco Biogenesis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wilson, Robert H ; Hayer-Hartl, Manajit</creator><creatorcontrib>Wilson, Robert H ; Hayer-Hartl, Manajit</creatorcontrib><description>Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.8b00132</identifier><identifier>PMID: 29589905</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Escherichia coli - genetics ; Escherichia coli - metabolism ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Ribulose-Bisphosphate Carboxylase - biosynthesis ; Ribulose-Bisphosphate Carboxylase - genetics</subject><ispartof>Biochemistry (Easton), 2018-06, Vol.57 (23), p.3210-3216</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</citedby><cites>FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</cites><orcidid>0000-0001-8213-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.8b00132$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.8b00132$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29589905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Robert H</creatorcontrib><creatorcontrib>Hayer-Hartl, Manajit</creatorcontrib><title>Complex Chaperone Dependence of Rubisco Biogenesis</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.</description><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Ribulose-Bisphosphate Carboxylase - biosynthesis</subject><subject>Ribulose-Bisphosphate Carboxylase - genetics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNtKw0AQhhdRbKw-gSB5gbSzpyR7qbEeoCCIXofs7sSmNNmwa0Df3pREL70ahvm_H-Yj5JrCigKj68qElW6c2WG7yjUA5eyERFQySIRS8pREAJAmTKWwIBch7MdVQCbOyYIpmSsFMiKscG1_wK-42FU9etdhfI89dhY7g7Gr49dBN8G4-K5xH9hhaMIlOaurQ8CreS7J-8PmrXhKti-Pz8XtNqm4kJ8JF9QYsAJSJlitWZ5yJqXhxmANGbWYa2VTa8GyTFSajseMATWCS5lKKviS8KnXeBeCx7rsfdNW_rukUB4NlKOBcjZQzgZG6mai-kG3aP-Y35fHwHoKHOm9G3w3PvFv5Q_bgGhx</recordid><startdate>20180612</startdate><enddate>20180612</enddate><creator>Wilson, Robert H</creator><creator>Hayer-Hartl, Manajit</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8213-6742</orcidid></search><sort><creationdate>20180612</creationdate><title>Complex Chaperone Dependence of Rubisco Biogenesis</title><author>Wilson, Robert H ; Hayer-Hartl, Manajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-341cc0d406242fb2863255c3ccef071de8b9d6dd0d274ab12557201c435565143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Ribulose-Bisphosphate Carboxylase - biosynthesis</topic><topic>Ribulose-Bisphosphate Carboxylase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Robert H</creatorcontrib><creatorcontrib>Hayer-Hartl, Manajit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Robert H</au><au>Hayer-Hartl, Manajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Chaperone Dependence of Rubisco Biogenesis</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2018-06-12</date><risdate>2018</risdate><volume>57</volume><issue>23</issue><spage>3210</spage><epage>3216</epage><pages>3210-3216</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29589905</pmid><doi>10.1021/acs.biochem.8b00132</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8213-6742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2018-06, Vol.57 (23), p.3210-3216
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_acs_biochem_8b00132
source MEDLINE; American Chemical Society Journals
subjects Escherichia coli - genetics
Escherichia coli - metabolism
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Recombinant Proteins - biosynthesis
Recombinant Proteins - genetics
Ribulose-Bisphosphate Carboxylase - biosynthesis
Ribulose-Bisphosphate Carboxylase - genetics
title Complex Chaperone Dependence of Rubisco Biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Chaperone%20Dependence%20of%20Rubisco%20Biogenesis&rft.jtitle=Biochemistry%20(Easton)&rft.au=Wilson,%20Robert%20H&rft.date=2018-06-12&rft.volume=57&rft.issue=23&rft.spage=3210&rft.epage=3216&rft.pages=3210-3216&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.8b00132&rft_dat=%3Cacs_cross%3Eb024098973%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29589905&rfr_iscdi=true