Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein

Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2021-12, Vol.60 (49), p.3801-3812
Hauptverfasser: Patterson, Dayna C, Liu, Yilin, Das, Sayan, Yennawar, Neela H, Armache, Jean-Paul, Kincaid, James R, Weinert, Emily E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3812
container_issue 49
container_start_page 3801
container_title Biochemistry (Easton)
container_volume 60
creator Patterson, Dayna C
Liu, Yilin
Das, Sayan
Yennawar, Neela H
Armache, Jean-Paul
Kincaid, James R
Weinert, Emily E
description Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.
doi_str_mv 10.1021/acs.biochem.1c00581
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_biochem_1c00581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d278954507</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMotlafQJC8wLY57CmXHqoVKoqt18tsdtKmdDcl2UV8e7e2eunVMMP__TAfIdecjTkTfAI6jEvr9BrrMdeMJTk_IUOeCBbFSiWnZMgYSyOhUjYgFyFs-jVmWXxOBjLOYym4GBKYYY3RtFohfcdgqw4DfXFVt4UW6cKuGtjSpYcmVJ1urWvop23XtqFA76zpmp9bH5m52kUPtkZvNV1gE5ynb961aJtLcmZgG_DqOEfk43G6vJ9F89en5_vbeQRSsTbCSkksuTAsLnmmc5HGkCmQoJFpqUoweWUgE6jKjCVGG0gF5BnXkKPMeSlHRB56tXcheDTFztsa_FfBWbEXVvTCiqOw4iisp24O1K4ra6z-mF9DfWByCOzpjet8_274t_IbXWl7sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</title><source>MEDLINE</source><source>ACS Publications</source><creator>Patterson, Dayna C ; Liu, Yilin ; Das, Sayan ; Yennawar, Neela H ; Armache, Jean-Paul ; Kincaid, James R ; Weinert, Emily E</creator><creatorcontrib>Patterson, Dayna C ; Liu, Yilin ; Das, Sayan ; Yennawar, Neela H ; Armache, Jean-Paul ; Kincaid, James R ; Weinert, Emily E</creatorcontrib><description>Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.1c00581</identifier><identifier>PMID: 34843212</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Cyclic GMP - analogs &amp; derivatives ; Cyclic GMP - chemistry ; Cyclic GMP - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene Expression ; Heme - chemistry ; Heme - metabolism ; Hemeproteins - chemistry ; Hemeproteins - genetics ; Hemeproteins - metabolism ; Kinetics ; Models, Molecular ; Oxygen - chemistry ; Oxygen - metabolism ; Paenibacillus - chemistry ; Paenibacillus - enzymology ; Paenibacillus - genetics ; Phosphoric Diester Hydrolases - chemistry ; Phosphoric Diester Hydrolases - genetics ; Phosphoric Diester Hydrolases - metabolism ; Phosphorus-Oxygen Lyases - chemistry ; Phosphorus-Oxygen Lyases - genetics ; Phosphorus-Oxygen Lyases - metabolism ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Signal Transduction ; Static Electricity ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Biochemistry (Easton), 2021-12, Vol.60 (49), p.3801-3812</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</citedby><cites>FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</cites><orcidid>0000-0003-1950-0331 ; 0000-0001-7278-659X ; 0000-0002-4986-8682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.1c00581$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.1c00581$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34843212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patterson, Dayna C</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Das, Sayan</creatorcontrib><creatorcontrib>Yennawar, Neela H</creatorcontrib><creatorcontrib>Armache, Jean-Paul</creatorcontrib><creatorcontrib>Kincaid, James R</creatorcontrib><creatorcontrib>Weinert, Emily E</creatorcontrib><title>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Cyclic GMP - analogs &amp; derivatives</subject><subject>Cyclic GMP - chemistry</subject><subject>Cyclic GMP - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene Expression</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Hemeproteins - chemistry</subject><subject>Hemeproteins - genetics</subject><subject>Hemeproteins - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Paenibacillus - chemistry</subject><subject>Paenibacillus - enzymology</subject><subject>Paenibacillus - genetics</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Phosphoric Diester Hydrolases - genetics</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Phosphorus-Oxygen Lyases - chemistry</subject><subject>Phosphorus-Oxygen Lyases - genetics</subject><subject>Phosphorus-Oxygen Lyases - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Static Electricity</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNtKAzEQhoMotlafQJC8wLY57CmXHqoVKoqt18tsdtKmdDcl2UV8e7e2eunVMMP__TAfIdecjTkTfAI6jEvr9BrrMdeMJTk_IUOeCBbFSiWnZMgYSyOhUjYgFyFs-jVmWXxOBjLOYym4GBKYYY3RtFohfcdgqw4DfXFVt4UW6cKuGtjSpYcmVJ1urWvop23XtqFA76zpmp9bH5m52kUPtkZvNV1gE5ynb961aJtLcmZgG_DqOEfk43G6vJ9F89en5_vbeQRSsTbCSkksuTAsLnmmc5HGkCmQoJFpqUoweWUgE6jKjCVGG0gF5BnXkKPMeSlHRB56tXcheDTFztsa_FfBWbEXVvTCiqOw4iisp24O1K4ra6z-mF9DfWByCOzpjet8_274t_IbXWl7sQ</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Patterson, Dayna C</creator><creator>Liu, Yilin</creator><creator>Das, Sayan</creator><creator>Yennawar, Neela H</creator><creator>Armache, Jean-Paul</creator><creator>Kincaid, James R</creator><creator>Weinert, Emily E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1950-0331</orcidid><orcidid>https://orcid.org/0000-0001-7278-659X</orcidid><orcidid>https://orcid.org/0000-0002-4986-8682</orcidid></search><sort><creationdate>20211214</creationdate><title>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</title><author>Patterson, Dayna C ; Liu, Yilin ; Das, Sayan ; Yennawar, Neela H ; Armache, Jean-Paul ; Kincaid, James R ; Weinert, Emily E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Cyclic GMP - analogs &amp; derivatives</topic><topic>Cyclic GMP - chemistry</topic><topic>Cyclic GMP - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene Expression</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Hemeproteins - chemistry</topic><topic>Hemeproteins - genetics</topic><topic>Hemeproteins - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Paenibacillus - chemistry</topic><topic>Paenibacillus - enzymology</topic><topic>Paenibacillus - genetics</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Phosphoric Diester Hydrolases - genetics</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Phosphorus-Oxygen Lyases - chemistry</topic><topic>Phosphorus-Oxygen Lyases - genetics</topic><topic>Phosphorus-Oxygen Lyases - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Static Electricity</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patterson, Dayna C</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Das, Sayan</creatorcontrib><creatorcontrib>Yennawar, Neela H</creatorcontrib><creatorcontrib>Armache, Jean-Paul</creatorcontrib><creatorcontrib>Kincaid, James R</creatorcontrib><creatorcontrib>Weinert, Emily E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patterson, Dayna C</au><au>Liu, Yilin</au><au>Das, Sayan</au><au>Yennawar, Neela H</au><au>Armache, Jean-Paul</au><au>Kincaid, James R</au><au>Weinert, Emily E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>60</volume><issue>49</issue><spage>3801</spage><epage>3812</epage><pages>3801-3812</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34843212</pmid><doi>10.1021/acs.biochem.1c00581</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1950-0331</orcidid><orcidid>https://orcid.org/0000-0001-7278-659X</orcidid><orcidid>https://orcid.org/0000-0002-4986-8682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2021-12, Vol.60 (49), p.3801-3812
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_acs_biochem_1c00581
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Amino Acid Substitution
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Cyclic GMP - analogs & derivatives
Cyclic GMP - chemistry
Cyclic GMP - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene Expression
Heme - chemistry
Heme - metabolism
Hemeproteins - chemistry
Hemeproteins - genetics
Hemeproteins - metabolism
Kinetics
Models, Molecular
Oxygen - chemistry
Oxygen - metabolism
Paenibacillus - chemistry
Paenibacillus - enzymology
Paenibacillus - genetics
Phosphoric Diester Hydrolases - chemistry
Phosphoric Diester Hydrolases - genetics
Phosphoric Diester Hydrolases - metabolism
Phosphorus-Oxygen Lyases - chemistry
Phosphorus-Oxygen Lyases - genetics
Phosphorus-Oxygen Lyases - metabolism
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protein Multimerization
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sequence Alignment
Sequence Homology, Amino Acid
Signal Transduction
Static Electricity
Structure-Activity Relationship
Substrate Specificity
title Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heme-Edge%20Residues%20Modulate%20Signal%20Transduction%20within%20a%20Bifunctional%20Homo-Dimeric%20Sensor%20Protein&rft.jtitle=Biochemistry%20(Easton)&rft.au=Patterson,%20Dayna%20C&rft.date=2021-12-14&rft.volume=60&rft.issue=49&rft.spage=3801&rft.epage=3812&rft.pages=3801-3812&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.1c00581&rft_dat=%3Cacs_cross%3Ed278954507%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34843212&rfr_iscdi=true