Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein
Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is s...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2021-12, Vol.60 (49), p.3801-3812 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3812 |
---|---|
container_issue | 49 |
container_start_page | 3801 |
container_title | Biochemistry (Easton) |
container_volume | 60 |
creator | Patterson, Dayna C Liu, Yilin Das, Sayan Yennawar, Neela H Armache, Jean-Paul Kincaid, James R Weinert, Emily E |
description | Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins. |
doi_str_mv | 10.1021/acs.biochem.1c00581 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_biochem_1c00581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d278954507</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMotlafQJC8wLY57CmXHqoVKoqt18tsdtKmdDcl2UV8e7e2eunVMMP__TAfIdecjTkTfAI6jEvr9BrrMdeMJTk_IUOeCBbFSiWnZMgYSyOhUjYgFyFs-jVmWXxOBjLOYym4GBKYYY3RtFohfcdgqw4DfXFVt4UW6cKuGtjSpYcmVJ1urWvop23XtqFA76zpmp9bH5m52kUPtkZvNV1gE5ynb961aJtLcmZgG_DqOEfk43G6vJ9F89en5_vbeQRSsTbCSkksuTAsLnmmc5HGkCmQoJFpqUoweWUgE6jKjCVGG0gF5BnXkKPMeSlHRB56tXcheDTFztsa_FfBWbEXVvTCiqOw4iisp24O1K4ra6z-mF9DfWByCOzpjet8_274t_IbXWl7sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</title><source>MEDLINE</source><source>ACS Publications</source><creator>Patterson, Dayna C ; Liu, Yilin ; Das, Sayan ; Yennawar, Neela H ; Armache, Jean-Paul ; Kincaid, James R ; Weinert, Emily E</creator><creatorcontrib>Patterson, Dayna C ; Liu, Yilin ; Das, Sayan ; Yennawar, Neela H ; Armache, Jean-Paul ; Kincaid, James R ; Weinert, Emily E</creatorcontrib><description>Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.1c00581</identifier><identifier>PMID: 34843212</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Cyclic GMP - analogs & derivatives ; Cyclic GMP - chemistry ; Cyclic GMP - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene Expression ; Heme - chemistry ; Heme - metabolism ; Hemeproteins - chemistry ; Hemeproteins - genetics ; Hemeproteins - metabolism ; Kinetics ; Models, Molecular ; Oxygen - chemistry ; Oxygen - metabolism ; Paenibacillus - chemistry ; Paenibacillus - enzymology ; Paenibacillus - genetics ; Phosphoric Diester Hydrolases - chemistry ; Phosphoric Diester Hydrolases - genetics ; Phosphoric Diester Hydrolases - metabolism ; Phosphorus-Oxygen Lyases - chemistry ; Phosphorus-Oxygen Lyases - genetics ; Phosphorus-Oxygen Lyases - metabolism ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Signal Transduction ; Static Electricity ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Biochemistry (Easton), 2021-12, Vol.60 (49), p.3801-3812</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</citedby><cites>FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</cites><orcidid>0000-0003-1950-0331 ; 0000-0001-7278-659X ; 0000-0002-4986-8682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.1c00581$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.1c00581$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34843212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patterson, Dayna C</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Das, Sayan</creatorcontrib><creatorcontrib>Yennawar, Neela H</creatorcontrib><creatorcontrib>Armache, Jean-Paul</creatorcontrib><creatorcontrib>Kincaid, James R</creatorcontrib><creatorcontrib>Weinert, Emily E</creatorcontrib><title>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Cyclic GMP - analogs & derivatives</subject><subject>Cyclic GMP - chemistry</subject><subject>Cyclic GMP - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene Expression</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Hemeproteins - chemistry</subject><subject>Hemeproteins - genetics</subject><subject>Hemeproteins - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Paenibacillus - chemistry</subject><subject>Paenibacillus - enzymology</subject><subject>Paenibacillus - genetics</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Phosphoric Diester Hydrolases - genetics</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Phosphorus-Oxygen Lyases - chemistry</subject><subject>Phosphorus-Oxygen Lyases - genetics</subject><subject>Phosphorus-Oxygen Lyases - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Static Electricity</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNtKAzEQhoMotlafQJC8wLY57CmXHqoVKoqt18tsdtKmdDcl2UV8e7e2eunVMMP__TAfIdecjTkTfAI6jEvr9BrrMdeMJTk_IUOeCBbFSiWnZMgYSyOhUjYgFyFs-jVmWXxOBjLOYym4GBKYYY3RtFohfcdgqw4DfXFVt4UW6cKuGtjSpYcmVJ1urWvop23XtqFA76zpmp9bH5m52kUPtkZvNV1gE5ynb961aJtLcmZgG_DqOEfk43G6vJ9F89en5_vbeQRSsTbCSkksuTAsLnmmc5HGkCmQoJFpqUoweWUgE6jKjCVGG0gF5BnXkKPMeSlHRB56tXcheDTFztsa_FfBWbEXVvTCiqOw4iisp24O1K4ra6z-mF9DfWByCOzpjet8_274t_IbXWl7sQ</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Patterson, Dayna C</creator><creator>Liu, Yilin</creator><creator>Das, Sayan</creator><creator>Yennawar, Neela H</creator><creator>Armache, Jean-Paul</creator><creator>Kincaid, James R</creator><creator>Weinert, Emily E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1950-0331</orcidid><orcidid>https://orcid.org/0000-0001-7278-659X</orcidid><orcidid>https://orcid.org/0000-0002-4986-8682</orcidid></search><sort><creationdate>20211214</creationdate><title>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</title><author>Patterson, Dayna C ; Liu, Yilin ; Das, Sayan ; Yennawar, Neela H ; Armache, Jean-Paul ; Kincaid, James R ; Weinert, Emily E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-ed93eb12f04b17c8264a79a3ace0c39baf8dfa72e9b705fcfa62a871ca8e381b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Cyclic GMP - analogs & derivatives</topic><topic>Cyclic GMP - chemistry</topic><topic>Cyclic GMP - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene Expression</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Hemeproteins - chemistry</topic><topic>Hemeproteins - genetics</topic><topic>Hemeproteins - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Paenibacillus - chemistry</topic><topic>Paenibacillus - enzymology</topic><topic>Paenibacillus - genetics</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Phosphoric Diester Hydrolases - genetics</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Phosphorus-Oxygen Lyases - chemistry</topic><topic>Phosphorus-Oxygen Lyases - genetics</topic><topic>Phosphorus-Oxygen Lyases - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Static Electricity</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patterson, Dayna C</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Das, Sayan</creatorcontrib><creatorcontrib>Yennawar, Neela H</creatorcontrib><creatorcontrib>Armache, Jean-Paul</creatorcontrib><creatorcontrib>Kincaid, James R</creatorcontrib><creatorcontrib>Weinert, Emily E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patterson, Dayna C</au><au>Liu, Yilin</au><au>Das, Sayan</au><au>Yennawar, Neela H</au><au>Armache, Jean-Paul</au><au>Kincaid, James R</au><au>Weinert, Emily E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>60</volume><issue>49</issue><spage>3801</spage><epage>3812</epage><pages>3801-3812</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34843212</pmid><doi>10.1021/acs.biochem.1c00581</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1950-0331</orcidid><orcidid>https://orcid.org/0000-0001-7278-659X</orcidid><orcidid>https://orcid.org/0000-0002-4986-8682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2021-12, Vol.60 (49), p.3801-3812 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_biochem_1c00581 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Amino Acid Substitution Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Sites Cyclic GMP - analogs & derivatives Cyclic GMP - chemistry Cyclic GMP - metabolism Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene Expression Heme - chemistry Heme - metabolism Hemeproteins - chemistry Hemeproteins - genetics Hemeproteins - metabolism Kinetics Models, Molecular Oxygen - chemistry Oxygen - metabolism Paenibacillus - chemistry Paenibacillus - enzymology Paenibacillus - genetics Phosphoric Diester Hydrolases - chemistry Phosphoric Diester Hydrolases - genetics Phosphoric Diester Hydrolases - metabolism Phosphorus-Oxygen Lyases - chemistry Phosphorus-Oxygen Lyases - genetics Phosphorus-Oxygen Lyases - metabolism Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protein Multimerization Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Alignment Sequence Homology, Amino Acid Signal Transduction Static Electricity Structure-Activity Relationship Substrate Specificity |
title | Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heme-Edge%20Residues%20Modulate%20Signal%20Transduction%20within%20a%20Bifunctional%20Homo-Dimeric%20Sensor%20Protein&rft.jtitle=Biochemistry%20(Easton)&rft.au=Patterson,%20Dayna%20C&rft.date=2021-12-14&rft.volume=60&rft.issue=49&rft.spage=3801&rft.epage=3812&rft.pages=3801-3812&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.1c00581&rft_dat=%3Cacs_cross%3Ed278954507%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34843212&rfr_iscdi=true |