Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase

Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2020-08, Vol.59 (33), p.2999-3009
Hauptverfasser: Paço, Lorela, Zarate-Perez, Francisco, Clouser, Amanda F, Atkins, William M, Hackett, John C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3009
container_issue 33
container_start_page 2999
container_title Biochemistry (Easton)
container_volume 59
creator Paço, Lorela
Zarate-Perez, Francisco
Clouser, Amanda F
Atkins, William M
Hackett, John C
description Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.
doi_str_mv 10.1021/acs.biochem.0c00460
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_biochem_0c00460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a771319040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoP5B2HDtOsgzlKRWxoevIjwl1he0qThf8Pa5aWLKah-4d3TmE3FKYUyjoQuo4VzboDbo5aAAu4IxMaVlAzpumPCdTABB50QiYkKsYt2nkUPFLMmFFVQvW1FOyfvj20lkdM-lN9oZ6I72NLgt9dm-9sf7z0LbeDCGO6NHY4DEbQ5I6NUiPeRtj0FaOaLJ2CE6OMuI1uejlV8SbU52R9dPjx_IlX70_vy7bVS4ZL8ecMdVwUQDvgWouU9KqUaLHpk47qYwyNeeIJVS6MhrqSmhDsQKUQiljOJsRdryrU7w4YN_tBuvk8N1R6A6QugSpO0HqTpCS6-7o2u2VQ_Pn-aWSBIuj4ODehv3g0xP_nvwBS-x2lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</title><source>MEDLINE</source><source>ACS Publications</source><creator>Paço, Lorela ; Zarate-Perez, Francisco ; Clouser, Amanda F ; Atkins, William M ; Hackett, John C</creator><creatorcontrib>Paço, Lorela ; Zarate-Perez, Francisco ; Clouser, Amanda F ; Atkins, William M ; Hackett, John C</creatorcontrib><description>Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.0c00460</identifier><identifier>PMID: 32786398</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Androstenedione - metabolism ; Androstenedione - pharmacokinetics ; Aromatase - chemistry ; Aromatase - metabolism ; Catalytic Domain ; Deuterium Exchange Measurement ; Humans ; Hydrogen Deuterium Exchange-Mass Spectrometry ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membranes - chemistry ; Membranes - metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Protein Binding</subject><ispartof>Biochemistry (Easton), 2020-08, Vol.59 (33), p.2999-3009</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</citedby><cites>FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</cites><orcidid>0000-0002-4923-2668 ; 0000-0002-2239-6419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00460$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.0c00460$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paço, Lorela</creatorcontrib><creatorcontrib>Zarate-Perez, Francisco</creatorcontrib><creatorcontrib>Clouser, Amanda F</creatorcontrib><creatorcontrib>Atkins, William M</creatorcontrib><creatorcontrib>Hackett, John C</creatorcontrib><title>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.</description><subject>Androstenedione - metabolism</subject><subject>Androstenedione - pharmacokinetics</subject><subject>Aromatase - chemistry</subject><subject>Aromatase - metabolism</subject><subject>Catalytic Domain</subject><subject>Deuterium Exchange Measurement</subject><subject>Humans</subject><subject>Hydrogen Deuterium Exchange-Mass Spectrometry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membranes - chemistry</subject><subject>Membranes - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBUgoP5B2HDtOsgzlKRWxoevIjwl1he0qThf8Pa5aWLKah-4d3TmE3FKYUyjoQuo4VzboDbo5aAAu4IxMaVlAzpumPCdTABB50QiYkKsYt2nkUPFLMmFFVQvW1FOyfvj20lkdM-lN9oZ6I72NLgt9dm-9sf7z0LbeDCGO6NHY4DEbQ5I6NUiPeRtj0FaOaLJ2CE6OMuI1uejlV8SbU52R9dPjx_IlX70_vy7bVS4ZL8ecMdVwUQDvgWouU9KqUaLHpk47qYwyNeeIJVS6MhrqSmhDsQKUQiljOJsRdryrU7w4YN_tBuvk8N1R6A6QugSpO0HqTpCS6-7o2u2VQ_Pn-aWSBIuj4ODehv3g0xP_nvwBS-x2lQ</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Paço, Lorela</creator><creator>Zarate-Perez, Francisco</creator><creator>Clouser, Amanda F</creator><creator>Atkins, William M</creator><creator>Hackett, John C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4923-2668</orcidid><orcidid>https://orcid.org/0000-0002-2239-6419</orcidid></search><sort><creationdate>20200825</creationdate><title>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</title><author>Paço, Lorela ; Zarate-Perez, Francisco ; Clouser, Amanda F ; Atkins, William M ; Hackett, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Androstenedione - metabolism</topic><topic>Androstenedione - pharmacokinetics</topic><topic>Aromatase - chemistry</topic><topic>Aromatase - metabolism</topic><topic>Catalytic Domain</topic><topic>Deuterium Exchange Measurement</topic><topic>Humans</topic><topic>Hydrogen Deuterium Exchange-Mass Spectrometry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membranes - chemistry</topic><topic>Membranes - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paço, Lorela</creatorcontrib><creatorcontrib>Zarate-Perez, Francisco</creatorcontrib><creatorcontrib>Clouser, Amanda F</creatorcontrib><creatorcontrib>Atkins, William M</creatorcontrib><creatorcontrib>Hackett, John C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paço, Lorela</au><au>Zarate-Perez, Francisco</au><au>Clouser, Amanda F</au><au>Atkins, William M</au><au>Hackett, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>59</volume><issue>33</issue><spage>2999</spage><epage>3009</epage><pages>2999-3009</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786398</pmid><doi>10.1021/acs.biochem.0c00460</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4923-2668</orcidid><orcidid>https://orcid.org/0000-0002-2239-6419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2020-08, Vol.59 (33), p.2999-3009
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_acs_biochem_0c00460
source MEDLINE; ACS Publications
subjects Androstenedione - metabolism
Androstenedione - pharmacokinetics
Aromatase - chemistry
Aromatase - metabolism
Catalytic Domain
Deuterium Exchange Measurement
Humans
Hydrogen Deuterium Exchange-Mass Spectrometry
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Membranes - chemistry
Membranes - metabolism
Models, Molecular
Molecular Docking Simulation
Molecular Dynamics Simulation
Protein Binding
title Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Mechanism%20of%20Binding%20of%20Androstenedione%20to%20Membrane-Associated%20Aromatase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Pac%CC%A7o,%20Lorela&rft.date=2020-08-25&rft.volume=59&rft.issue=33&rft.spage=2999&rft.epage=3009&rft.pages=2999-3009&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.0c00460&rft_dat=%3Cacs_cross%3Ea771319040%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32786398&rfr_iscdi=true