Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase
Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understan...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2020-08, Vol.59 (33), p.2999-3009 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3009 |
---|---|
container_issue | 33 |
container_start_page | 2999 |
container_title | Biochemistry (Easton) |
container_volume | 59 |
creator | Paço, Lorela Zarate-Perez, Francisco Clouser, Amanda F Atkins, William M Hackett, John C |
description | Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs. |
doi_str_mv | 10.1021/acs.biochem.0c00460 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_biochem_0c00460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a771319040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoP5B2HDtOsgzlKRWxoevIjwl1he0qThf8Pa5aWLKah-4d3TmE3FKYUyjoQuo4VzboDbo5aAAu4IxMaVlAzpumPCdTABB50QiYkKsYt2nkUPFLMmFFVQvW1FOyfvj20lkdM-lN9oZ6I72NLgt9dm-9sf7z0LbeDCGO6NHY4DEbQ5I6NUiPeRtj0FaOaLJ2CE6OMuI1uejlV8SbU52R9dPjx_IlX70_vy7bVS4ZL8ecMdVwUQDvgWouU9KqUaLHpk47qYwyNeeIJVS6MhrqSmhDsQKUQiljOJsRdryrU7w4YN_tBuvk8N1R6A6QugSpO0HqTpCS6-7o2u2VQ_Pn-aWSBIuj4ODehv3g0xP_nvwBS-x2lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</title><source>MEDLINE</source><source>ACS Publications</source><creator>Paço, Lorela ; Zarate-Perez, Francisco ; Clouser, Amanda F ; Atkins, William M ; Hackett, John C</creator><creatorcontrib>Paço, Lorela ; Zarate-Perez, Francisco ; Clouser, Amanda F ; Atkins, William M ; Hackett, John C</creatorcontrib><description>Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.0c00460</identifier><identifier>PMID: 32786398</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Androstenedione - metabolism ; Androstenedione - pharmacokinetics ; Aromatase - chemistry ; Aromatase - metabolism ; Catalytic Domain ; Deuterium Exchange Measurement ; Humans ; Hydrogen Deuterium Exchange-Mass Spectrometry ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membranes - chemistry ; Membranes - metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Protein Binding</subject><ispartof>Biochemistry (Easton), 2020-08, Vol.59 (33), p.2999-3009</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</citedby><cites>FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</cites><orcidid>0000-0002-4923-2668 ; 0000-0002-2239-6419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00460$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.0c00460$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paço, Lorela</creatorcontrib><creatorcontrib>Zarate-Perez, Francisco</creatorcontrib><creatorcontrib>Clouser, Amanda F</creatorcontrib><creatorcontrib>Atkins, William M</creatorcontrib><creatorcontrib>Hackett, John C</creatorcontrib><title>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.</description><subject>Androstenedione - metabolism</subject><subject>Androstenedione - pharmacokinetics</subject><subject>Aromatase - chemistry</subject><subject>Aromatase - metabolism</subject><subject>Catalytic Domain</subject><subject>Deuterium Exchange Measurement</subject><subject>Humans</subject><subject>Hydrogen Deuterium Exchange-Mass Spectrometry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membranes - chemistry</subject><subject>Membranes - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBUgoP5B2HDtOsgzlKRWxoevIjwl1he0qThf8Pa5aWLKah-4d3TmE3FKYUyjoQuo4VzboDbo5aAAu4IxMaVlAzpumPCdTABB50QiYkKsYt2nkUPFLMmFFVQvW1FOyfvj20lkdM-lN9oZ6I72NLgt9dm-9sf7z0LbeDCGO6NHY4DEbQ5I6NUiPeRtj0FaOaLJ2CE6OMuI1uejlV8SbU52R9dPjx_IlX70_vy7bVS4ZL8ecMdVwUQDvgWouU9KqUaLHpk47qYwyNeeIJVS6MhrqSmhDsQKUQiljOJsRdryrU7w4YN_tBuvk8N1R6A6QugSpO0HqTpCS6-7o2u2VQ_Pn-aWSBIuj4ODehv3g0xP_nvwBS-x2lQ</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Paço, Lorela</creator><creator>Zarate-Perez, Francisco</creator><creator>Clouser, Amanda F</creator><creator>Atkins, William M</creator><creator>Hackett, John C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4923-2668</orcidid><orcidid>https://orcid.org/0000-0002-2239-6419</orcidid></search><sort><creationdate>20200825</creationdate><title>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</title><author>Paço, Lorela ; Zarate-Perez, Francisco ; Clouser, Amanda F ; Atkins, William M ; Hackett, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-33b946204f01c4a29679b6fe98204abdbd844ee507c7dc0876cd1e70ea6bbdd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Androstenedione - metabolism</topic><topic>Androstenedione - pharmacokinetics</topic><topic>Aromatase - chemistry</topic><topic>Aromatase - metabolism</topic><topic>Catalytic Domain</topic><topic>Deuterium Exchange Measurement</topic><topic>Humans</topic><topic>Hydrogen Deuterium Exchange-Mass Spectrometry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membranes - chemistry</topic><topic>Membranes - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paço, Lorela</creatorcontrib><creatorcontrib>Zarate-Perez, Francisco</creatorcontrib><creatorcontrib>Clouser, Amanda F</creatorcontrib><creatorcontrib>Atkins, William M</creatorcontrib><creatorcontrib>Hackett, John C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paço, Lorela</au><au>Zarate-Perez, Francisco</au><au>Clouser, Amanda F</au><au>Atkins, William M</au><au>Hackett, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>59</volume><issue>33</issue><spage>2999</spage><epage>3009</epage><pages>2999-3009</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B′–C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD’s binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786398</pmid><doi>10.1021/acs.biochem.0c00460</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4923-2668</orcidid><orcidid>https://orcid.org/0000-0002-2239-6419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2020-08, Vol.59 (33), p.2999-3009 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_biochem_0c00460 |
source | MEDLINE; ACS Publications |
subjects | Androstenedione - metabolism Androstenedione - pharmacokinetics Aromatase - chemistry Aromatase - metabolism Catalytic Domain Deuterium Exchange Measurement Humans Hydrogen Deuterium Exchange-Mass Spectrometry Lipid Bilayers - chemistry Lipid Bilayers - metabolism Membranes - chemistry Membranes - metabolism Models, Molecular Molecular Docking Simulation Molecular Dynamics Simulation Protein Binding |
title | Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Mechanism%20of%20Binding%20of%20Androstenedione%20to%20Membrane-Associated%20Aromatase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Pac%CC%A7o,%20Lorela&rft.date=2020-08-25&rft.volume=59&rft.issue=33&rft.spage=2999&rft.epage=3009&rft.pages=2999-3009&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.0c00460&rft_dat=%3Cacs_cross%3Ea771319040%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32786398&rfr_iscdi=true |