High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis
Isolation and purification of extracellular vesicles (EVs) from plasma is essential to understand the EV circulation mechanism and discover biomarkers for the early detection of diseases. However, the size range of lipoprotein particles such as high density lipoprotein (HDL), low density lipoprotein...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-06, Vol.92 (11), p.7493-7499 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7499 |
---|---|
container_issue | 11 |
container_start_page | 7493 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Zhang, Yan Deng, Zaian Lou, Doudou Wang, Yong Wang, Rui Hu, Rui Zhang, Xueer Zhu, Qingfu Chen, Yuchao Liu, Fei |
description | Isolation and purification of extracellular vesicles (EVs) from plasma is essential to understand the EV circulation mechanism and discover biomarkers for the early detection of diseases. However, the size range of lipoprotein particles such as high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) overlap that of EVs, making it difficult to remove lipoproteins from EVs. Here, we propose a method for the high efficiency separation of EVs in plasma using agarose gel electrophoresis based on their differences in size and zeta potential properties. Electrophoresis track assays revealed that EVs propagate more slowly than HDL but more quickly than LDL and VLDL in 1% agarose gel with pH 7.4 Tris-Acetate-EDTA (TAE) buffer. The size and morphology of the electrophoresis-recovered products were characterized to be consistent with typical EVs. In addition, the biological function of recovered EVs was investigated with cell uptake tests. The feasibility of this method was further verified with human plasma samples. In summary, this technique has the potential to become a convenient and efficient approach for high-purity EV separation. |
doi_str_mv | 10.1021/acs.analchem.9b05675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_analchem_9b05675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410833172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5238206bf0041b6f1a62381276f91901e570ecd6d8c0162b8eb83278a445ed973</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaTZp_0Epgh6LtzOSP-RjWLZJYKGFflyNrB1lFWTLlWza_fdVs5ucexoxPO8w84ixdwhrBIGftElrPWpvDjSs2x6quqlesBVWAopaKfGSrQBAFqIBuGCXKT0AIALWr9mFFEJK2coVC7fu_lBsrXXG0WiO_BtNOurZhZEHy7d_5qgNeb94HflPSs54StzGMPCdm8IUw0xuTNyN_KvXadC8P_Lrex1DIn5Dnm89mTmG6RBiTqc37JXVPtHbc71iPz5vv29ui92Xm7vN9a4wJeBcVEIqAXVvAUrsa4u6zh0UTW1bbAGpaoDMvt4rky8SvaJeSdEoXZYV7dtGXrEPp7l5w18Lpbl7CEvMulInSgQlJTYiU-WJMnnfFMl2U3SDjscOoftnucuWuyfL3dlyjr0_D1_6gfbPoSetGVAn4Df1waZHtfSM5W-ppCqxKfNLwMbNj743YRnnHP34_1H5Fy4MnIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410833172</pqid></control><display><type>article</type><title>High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis</title><source>ACS Publications</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zhang, Yan ; Deng, Zaian ; Lou, Doudou ; Wang, Yong ; Wang, Rui ; Hu, Rui ; Zhang, Xueer ; Zhu, Qingfu ; Chen, Yuchao ; Liu, Fei</creator><creatorcontrib>Zhang, Yan ; Deng, Zaian ; Lou, Doudou ; Wang, Yong ; Wang, Rui ; Hu, Rui ; Zhang, Xueer ; Zhu, Qingfu ; Chen, Yuchao ; Liu, Fei</creatorcontrib><description>Isolation and purification of extracellular vesicles (EVs) from plasma is essential to understand the EV circulation mechanism and discover biomarkers for the early detection of diseases. However, the size range of lipoprotein particles such as high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) overlap that of EVs, making it difficult to remove lipoproteins from EVs. Here, we propose a method for the high efficiency separation of EVs in plasma using agarose gel electrophoresis based on their differences in size and zeta potential properties. Electrophoresis track assays revealed that EVs propagate more slowly than HDL but more quickly than LDL and VLDL in 1% agarose gel with pH 7.4 Tris-Acetate-EDTA (TAE) buffer. The size and morphology of the electrophoresis-recovered products were characterized to be consistent with typical EVs. In addition, the biological function of recovered EVs was investigated with cell uptake tests. The feasibility of this method was further verified with human plasma samples. In summary, this technique has the potential to become a convenient and efficient approach for high-purity EV separation.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b05675</identifier><identifier>PMID: 32233393</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Acetic acid ; Analytical chemistry ; Biomarkers ; Blood plasma ; Chemistry ; Chemistry, Analytical ; Density ; Electrophoresis ; Electrophoresis, Agar Gel ; Ethylenediaminetetraacetic acids ; Extracellular vesicles ; Extracellular Vesicles - chemistry ; Gel electrophoresis ; High density lipoprotein ; Humans ; Lipoproteins ; Lipoproteins (very low density) ; Lipoproteins - blood ; Lipoproteins - chemistry ; Low density lipoprotein ; Morphology ; Physical Sciences ; Plasma ; Science & Technology ; Separation ; Vesicles ; Zeta potential</subject><ispartof>Analytical chemistry (Washington), 2020-06, Vol.92 (11), p.7493-7499</ispartof><rights>Copyright American Chemical Society Jun 2, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>30</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000538417400020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c401t-5238206bf0041b6f1a62381276f91901e570ecd6d8c0162b8eb83278a445ed973</citedby><cites>FETCH-LOGICAL-c401t-5238206bf0041b6f1a62381276f91901e570ecd6d8c0162b8eb83278a445ed973</cites><orcidid>0000-0001-5259-5753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2769,27933,27934,28257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32233393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Deng, Zaian</creatorcontrib><creatorcontrib>Lou, Doudou</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Zhang, Xueer</creatorcontrib><creatorcontrib>Zhu, Qingfu</creatorcontrib><creatorcontrib>Chen, Yuchao</creatorcontrib><creatorcontrib>Liu, Fei</creatorcontrib><title>High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis</title><title>Analytical chemistry (Washington)</title><addtitle>ANAL CHEM</addtitle><addtitle>Anal Chem</addtitle><description>Isolation and purification of extracellular vesicles (EVs) from plasma is essential to understand the EV circulation mechanism and discover biomarkers for the early detection of diseases. However, the size range of lipoprotein particles such as high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) overlap that of EVs, making it difficult to remove lipoproteins from EVs. Here, we propose a method for the high efficiency separation of EVs in plasma using agarose gel electrophoresis based on their differences in size and zeta potential properties. Electrophoresis track assays revealed that EVs propagate more slowly than HDL but more quickly than LDL and VLDL in 1% agarose gel with pH 7.4 Tris-Acetate-EDTA (TAE) buffer. The size and morphology of the electrophoresis-recovered products were characterized to be consistent with typical EVs. In addition, the biological function of recovered EVs was investigated with cell uptake tests. The feasibility of this method was further verified with human plasma samples. In summary, this technique has the potential to become a convenient and efficient approach for high-purity EV separation.</description><subject>Acetic acid</subject><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Blood plasma</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Density</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Agar Gel</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - chemistry</subject><subject>Gel electrophoresis</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Lipoproteins</subject><subject>Lipoproteins (very low density)</subject><subject>Lipoproteins - blood</subject><subject>Lipoproteins - chemistry</subject><subject>Low density lipoprotein</subject><subject>Morphology</subject><subject>Physical Sciences</subject><subject>Plasma</subject><subject>Science & Technology</subject><subject>Separation</subject><subject>Vesicles</subject><subject>Zeta potential</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpaTZp_0Epgh6LtzOSP-RjWLZJYKGFflyNrB1lFWTLlWza_fdVs5ucexoxPO8w84ixdwhrBIGftElrPWpvDjSs2x6quqlesBVWAopaKfGSrQBAFqIBuGCXKT0AIALWr9mFFEJK2coVC7fu_lBsrXXG0WiO_BtNOurZhZEHy7d_5qgNeb94HflPSs54StzGMPCdm8IUw0xuTNyN_KvXadC8P_Lrex1DIn5Dnm89mTmG6RBiTqc37JXVPtHbc71iPz5vv29ui92Xm7vN9a4wJeBcVEIqAXVvAUrsa4u6zh0UTW1bbAGpaoDMvt4rky8SvaJeSdEoXZYV7dtGXrEPp7l5w18Lpbl7CEvMulInSgQlJTYiU-WJMnnfFMl2U3SDjscOoftnucuWuyfL3dlyjr0_D1_6gfbPoSetGVAn4Df1waZHtfSM5W-ppCqxKfNLwMbNj743YRnnHP34_1H5Fy4MnIA</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Zhang, Yan</creator><creator>Deng, Zaian</creator><creator>Lou, Doudou</creator><creator>Wang, Yong</creator><creator>Wang, Rui</creator><creator>Hu, Rui</creator><creator>Zhang, Xueer</creator><creator>Zhu, Qingfu</creator><creator>Chen, Yuchao</creator><creator>Liu, Fei</creator><general>Amer Chemical Soc</general><general>American Chemical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5259-5753</orcidid></search><sort><creationdate>20200602</creationdate><title>High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis</title><author>Zhang, Yan ; Deng, Zaian ; Lou, Doudou ; Wang, Yong ; Wang, Rui ; Hu, Rui ; Zhang, Xueer ; Zhu, Qingfu ; Chen, Yuchao ; Liu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5238206bf0041b6f1a62381276f91901e570ecd6d8c0162b8eb83278a445ed973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Blood plasma</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Density</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Agar Gel</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - chemistry</topic><topic>Gel electrophoresis</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Lipoproteins</topic><topic>Lipoproteins (very low density)</topic><topic>Lipoproteins - blood</topic><topic>Lipoproteins - chemistry</topic><topic>Low density lipoprotein</topic><topic>Morphology</topic><topic>Physical Sciences</topic><topic>Plasma</topic><topic>Science & Technology</topic><topic>Separation</topic><topic>Vesicles</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Deng, Zaian</creatorcontrib><creatorcontrib>Lou, Doudou</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Zhang, Xueer</creatorcontrib><creatorcontrib>Zhu, Qingfu</creatorcontrib><creatorcontrib>Chen, Yuchao</creatorcontrib><creatorcontrib>Liu, Fei</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Deng, Zaian</au><au>Lou, Doudou</au><au>Wang, Yong</au><au>Wang, Rui</au><au>Hu, Rui</au><au>Zhang, Xueer</au><au>Zhu, Qingfu</au><au>Chen, Yuchao</au><au>Liu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><stitle>ANAL CHEM</stitle><addtitle>Anal Chem</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>92</volume><issue>11</issue><spage>7493</spage><epage>7499</epage><pages>7493-7499</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Isolation and purification of extracellular vesicles (EVs) from plasma is essential to understand the EV circulation mechanism and discover biomarkers for the early detection of diseases. However, the size range of lipoprotein particles such as high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) overlap that of EVs, making it difficult to remove lipoproteins from EVs. Here, we propose a method for the high efficiency separation of EVs in plasma using agarose gel electrophoresis based on their differences in size and zeta potential properties. Electrophoresis track assays revealed that EVs propagate more slowly than HDL but more quickly than LDL and VLDL in 1% agarose gel with pH 7.4 Tris-Acetate-EDTA (TAE) buffer. The size and morphology of the electrophoresis-recovered products were characterized to be consistent with typical EVs. In addition, the biological function of recovered EVs was investigated with cell uptake tests. The feasibility of this method was further verified with human plasma samples. In summary, this technique has the potential to become a convenient and efficient approach for high-purity EV separation.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>32233393</pmid><doi>10.1021/acs.analchem.9b05675</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5259-5753</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-06, Vol.92 (11), p.7493-7499 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_analchem_9b05675 |
source | ACS Publications; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Acetic acid Analytical chemistry Biomarkers Blood plasma Chemistry Chemistry, Analytical Density Electrophoresis Electrophoresis, Agar Gel Ethylenediaminetetraacetic acids Extracellular vesicles Extracellular Vesicles - chemistry Gel electrophoresis High density lipoprotein Humans Lipoproteins Lipoproteins (very low density) Lipoproteins - blood Lipoproteins - chemistry Low density lipoprotein Morphology Physical Sciences Plasma Science & Technology Separation Vesicles Zeta potential |
title | High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T11%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Efficiency%20Separation%20of%20Extracellular%20Vesicles%20from%20Lipoproteins%20in%20Plasma%20by%20Agarose%20Gel%20Electrophoresis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Yan&rft.date=2020-06-02&rft.volume=92&rft.issue=11&rft.spage=7493&rft.epage=7499&rft.pages=7493-7499&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b05675&rft_dat=%3Cproquest_cross%3E2410833172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410833172&rft_id=info:pmid/32233393&rfr_iscdi=true |